Debra A Callahan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7923026/publications.pdf

Version: 2024-02-01

135 papers 9,593 citations

28274 55 h-index 95 g-index

136 all docs

136
docs citations

136 times ranked

2081 citing authors

#	Article	IF	CITATIONS
1	Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 2014, 506, 343-348.	27.8	742
2	Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Physics of Plasmas, $2011,18,18$	1.9	534
3	Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies. Science, 2010, 327, 1228-1231.	12.6	321
4	Progress towards ignition on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	259
5	Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer. Physical Review Letters, 2009, 102, 025004.	7.8	247
6	Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.	27.8	233
7	Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions. Physical Review Letters, 2013, 111, 085004.	7.8	215
8	Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. Physical Review Letters, 2018, 120, 245003.	7.8	205
9	High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility. Physical Review Letters, 2014, 112, 055001.	7.8	199
10	Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility. Physical Review Letters, 2014, 112, 055002.	7.8	173
11	Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility. Physics of Plasmas, 2010, 17, .	1.9	171
12	The high-foot implosion campaign on the National Ignition Facility. Physics of Plasmas, 2014, $21, \ldots$	1.9	149
13	The experimental plan for cryogenic layered target implosions on the National Ignition Facilityâ€"The inertial confinement approach to fusion. Physics of Plasmas, 2011, 18, .	1.9	148
14	Inertially confined fusion plasmas dominated by alpha-particle self-heating. Nature Physics, 2016, 12, 800-806.	16.7	144
15	Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	140
16	Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets. Physical Review Letters, 2013, 111, 045001.	7.8	135
17	Capsule implosion optimization during the indirect-drive National Ignition Campaign. Physics of Plasmas, $2011,18,.$	1.9	131
18	Implosion dynamics measurements at the National Ignition Facility. Physics of Plasmas, 2012, 19, .	1.9	125

#	Article	IF	CITATIONS
19	First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum. Physical Review Letters, 2015, 114, 175001.	7.8	117
20	High-density carbon ablator experiments on the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	116
21	National Ignition Campaign Hohlraum energetics. Physics of Plasmas, 2010, 17, .	1.9	115
22	Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation. Physics of Plasmas, 2012, 19, .	1.9	115
23	A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments. Physics of Plasmas, 2012, 19, .	1.9	108
24	Hot-spot mix in ignition-scale implosions on the NIF. Physics of Plasmas, 2012, 19, .	1.9	107
25	Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity. Physics of Plasmas, 2017, 24, .	1.9	106
26	Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nature Physics, 2012, 8, 344-349.	16.7	104
27	Symmetry tuning for ignition capsules via the symcap technique. Physics of Plasmas, 2011, 18, .	1.9	101
28	Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility. Physical Review Letters, 2015, 115, 055001.	7.8	101
29	Measuring symmetry of implosions in cryogenic <i>Hohlraums</i> at the NIF using gated x-ray detectors (invited). Review of Scientific Instruments, 2010, 81, 10E316.	1.3	95
30	Cryogenic thermonuclear fuel implosions on the National Ignition Facility. Physics of Plasmas, 2012, 19, .	1.9	95
31	Energy transfer between laser beams crossing in ignition hohlraums. Physics of Plasmas, 2009, 16, .	1.9	92
32	The high velocity, high adiabat, "Bigfoot―campaign and tests of indirect-drive implosion scaling. Physics of Plasmas, 2018, 25, .	1.9	90
33	Plastic ablator ignition capsule design for the National Ignition Facility. Physics of Plasmas, 2010, 17, .	1.9	89
34	Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.	16.7	87
35	High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility. Physical Review Letters, 2018, 121, 135001.	7.8	86
36	Approaching a burning plasma on the NIF. Physics of Plasmas, 2019, 26, .	1.9	83

#	Article	IF	Citations
37	Analysis of the National Ignition Facility ignition hohlraum energetics experiments. Physics of Plasmas, $2011,18,.$	1.9	82
38	of Plasmas, 2015, 22, 056315.	1.9	82
39	Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser. Physics of Plasmas, 2018, 25, .	1.9	79
40	Reduced instability growth with high-adiabat high-foot implosions at the National Ignition Facility. Physical Review E, 2014, 90, 011102.	2.1	77
41	The velocity campaign for ignition on NIF. Physics of Plasmas, 2012, 19, .	1.9	76
42	Record Energetics for an Inertial Fusion Implosion at NIF. Physical Review Letters, 2021, 126, 025001.	7.8	76
43	The first measurements of soft x-ray flux from ignition scale <i>Hohlraums</i> at the National Ignition Facility using DANTE (invited). Review of Scientific Instruments, 2010, 81, 10E321.	1.3	66
44	Nuclear imaging of the fuel assembly in ignition experiments. Physics of Plasmas, 2013, 20, 056320.	1.9	65
45	Indirect drive ignition at the National Ignition Facility. Plasma Physics and Controlled Fusion, 2017, 59, 014021.	2.1	64
46	Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries. Physical Review Letters, 2013, 110, 075001.	7.8	63
47	Progress in hohlraum physics for the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	62
48	Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility. Physical Review Letters, 2016, 117, 225002.	7.8	61
49	Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility. Plasma Physics and Controlled Fusion, 2019, 61, 014033.	2.1	61
50	Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility. Physical Review Letters, 2014, 112, 025002.	7.8	60
51	Hohlraum energetics scaling to 520 TW on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	59
52	Integrated modeling of cryogenic layered highfoot experiments at the NIF. Physics of Plasmas, 2016, 23,	1.9	59
53	Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive. Physical Review Letters, 2015, 115, 105001.	7.8	58
54	Assembly of High-Areal-Density Deuterium-Tritium Fuel from Indirectly Driven Cryogenic Implosions. Physical Review Letters, 2012, 108, 215005.	7.8	57

#	Article	IF	CITATIONS
55	Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility. Physical Review Letters, 2015, 114, 145004.	7.8	56
56	Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Physics of Plasmas, 2021, 28, .	1.9	55
57	Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. Physical Review E, 2011, 83, 046409.	2.1	54
58	X-ray driven implosions at ignition relevant velocities on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	54
59	Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023.	2.1	53
60	Capsule performance optimization in the National Ignition Campaign. Physics of Plasmas, 2010, 17, .	1.9	51
61	Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled <i>Hohlraums</i> . Physics of Plasmas, 2010, 17, .	1.9	51
62	The near vacuum hohlraum campaign at the NIF: A new approach. Physics of Plasmas, 2016, 23, .	1.9	51
63	Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	50
64	2015, 22, 056314.	1.9	49
65	Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility. Physical Review E, 2016, 94, 021202.	2.1	49
66	The role of hot spot mix in the low-foot and high-foot implosions on the NIF. Physics of Plasmas, 2017, 24, .	1,9	49
67	X-ray conversion efficiency in vacuum hohlraum experiments at the National Ignition Facility. Physics of Plasmas, 2012, 19, 053301.	1.9	48
68	Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating. Physics of Plasmas, 2013, 20, .	1.9	48
69	Performance of High-Convergence, Layered DT Implosions with Extended-Duration Pulses at the National Ignition Facility. Physical Review Letters, 2013, 111, 215001.	7.8	47
70	On the importance of minimizing "coast-time―in x-ray driven inertially confined fusion implosions. Physics of Plasmas, 2017, 24, .	1.9	47
71	Hot-spot mix in large-scale HDC implosions at NIF. Physics of Plasmas, 2020, 27, .	1.9	46
72	Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums. Physical Review Letters, 2016, 116, 075003.	7.8	45

#	Article	IF	Citations
73	Direct Measurement of Energetic Electrons Coupling to an Imploding Low-Adiabat Inertial Confinement Fusion Capsule. Physical Review Letters, 2012, 108, 135006.	7.8	44
74	Early-Time Symmetry Tuning in the Presence of Cross-Beam Energy Transfer in ICF Experiments on the National Ignition Facility. Physical Review Letters, 2013, 111, 235001.	7.8	44
75	Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	42
76	Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant. Physics of Plasmas, 2018, 25, .	1.9	42
77	The influence of hohlraum dynamics on implosion symmetry in indirect drive inertial confinement fusion experiments. Physics of Plasmas, 2018, 25, .	1.9	42
78	First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility. Plasma Physics and Controlled Fusion, 2012, 54, 045013.	2.1	41
79	Evidence of Three-Dimensional Asymmetries Seeded by High-Density Carbon-Ablator Nonuniformity in Experiments at the National Ignition Facility. Physical Review Letters, 2021, 126, 025002.	7.8	40
80	Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators. Physics of Plasmas, 2018, 25, .	1,9	39
81	Charged-particle spectroscopy for diagnosing shock ÏR and strength in NIF implosions. Review of Scientific Instruments, 2012, 83, 10D901.	1.3	38
82	Progress in the indirect-drive National Ignition Campaign. Plasma Physics and Controlled Fusion, 2012, 54, 124026.	2.1	38
83	Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping. Physics of Plasmas, 2016, 23, 056303.	1.9	38
84	First beryllium capsule implosions on the National Ignition Facility. Physics of Plasmas, 2016, 23, 056310.	1.9	37
85	Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration. Physics of Plasmas, 2014, 21, .	1.9	36
86	Stochastic Ion Heating from Many Overlapping Laser Beams in Fusion Plasmas. Physical Review Letters, 2012, 109, 195004.	7.8	35
87	Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	34
88	Symmetry control in subscale near-vacuum hohlraums. Physics of Plasmas, 2016, 23, .	1.9	34
89	Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility. Physics of Plasmas, 2017, 24, .	1.9	31
90	First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility. Physics of Plasmas, 2015, 22, .	1.9	29

#	Article	IF	Citations
91	NIF Ignition Campaign Target Performance and Requirements: Status May 2012. Fusion Science and Technology, 2013, 63, 67-75.	1.1	28
92	Symmetric fielding of the largest diamond capsule implosions on the NIF. Physics of Plasmas, 2020, 27, .	1.9	28
93	Plasma stopping-power measurements reveal transition from non-degenerate to degenerate plasmas. Nature Physics, 2020, 16, 432-437.	16.7	28
94	Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	27
95	Energy transfer between lasers in low-gas-fill-density hohlraums. Physical Review E, 2018, 98, .	2.1	27
96	Energetics of multiple-ion species hohlraum plasmas. Physics of Plasmas, 2008, 15, .	1.9	26
97	Implosion performance of subscale beryllium capsules on the NIF. Physics of Plasmas, 2019, 26, 052707.	1.9	26
98	South pole bang-time diagnostic on the National Ignition Facility (invited). Review of Scientific Instruments, 2012, 83, 10E119.	1.3	25
99	Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility. Physical Review E, 2020, 102, 023210.	2.1	25
100	In-flight observations of low-mode ⟨i⟩Ï⟨/i⟩R asymmetries in NIF implosions. Physics of Plasmas, 2015, 22,	1.9	24
101	Measurement of electron temperature of imploded capsules at the National Ignition Facility. Review of Scientific Instruments, 2012, 83, 10E121.	1.3	23
102	Progress toward ignition at the National Ignition Facility. Plasma Physics and Controlled Fusion, 2013, 55, 124015.	2.1	23
103	Soft x-ray images of the laser entrance hole of ignition hohlraums. Review of Scientific Instruments, 2012, 83, 10E525.	1.3	22
104	Integrated performance of large HDC-capsule implosions on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	22
105	Extensions of a classical mechanics $\hat{a} \in \hat{c}$ piston-model $\hat{a} \in \hat{c}$ for understanding the impact of asymmetry on ICF implosions: The cases of mode 2, mode 2/1 coupling, time-dependent asymmetry, and the relationship to coast-time. Physics of Plasmas, 2022, 29, .	1.9	22
106	The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions. Physics of Plasmas, 2014, 21, .	1.9	20
107	Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility. Physics of Plasmas, 2018, 25, .	1.9	20
108	Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	20

#	Article	IF	CITATIONS
109	The size and structure of the laser entrance hole in gas-filled hohlraums at the National Ignition Facility. Physics of Plasmas, 2015, 22, .	1.9	19
110	Application of cross-beam energy transfer to control drive symmetry in ICF implosions in low gas fill <i>Hohlraums</i> at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	18
111	Update 2015 on Target Fabrication Requirements for NIF Layered Implosions, with Emphasis on Capsule Support and Oxygen Modulations in GDP. Fusion Science and Technology, 2016, 70, 121-126.	1.1	16
112	Implosion shape control of high-velocity, large case-to-capsule ratio beryllium ablators at the National Ignition Facility. Physics of Plasmas, 2018, 25, 072708.	1.9	16
113	Low mode implosion symmetry sensitivity in low gas-fill NIF cylindrical hohlraums. Physics of Plasmas, 2021, 28, .	1.9	15
114	Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility. Physics of Plasmas, 2019, 26, .	1.9	14
115	A simple model to scope out parameter space for indirect drive designs on NIF. Physics of Plasmas, 2020, 27, .	1.9	14
116	Simulations of indirectly driven gas-filled capsules at the National Ignition Facility. Physics of Plasmas, $2014, 21, \ldots$	1.9	12
117	Images of the gold bubble feature in NIF Gas-Filled Ignition Hohlraums. Journal of Physics: Conference Series, 2016, 717, 012049.	0.4	12
118	Three dimensional low-mode areal-density non-uniformities in indirect-drive implosions at the National Ignition Facility. Physics of Plasmas, 2021, 28, .	1.9	12
119	Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators. Physics of Plasmas, 2020, 27, .	1.9	11
120	View factor estimation of hot spot velocities in inertial confinement fusion implosions at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	9
121	Spatially resolved X-ray emission measurements of the residual velocity during the stagnation phase of inertial confinement fusion implosion experiments. Physics of Plasmas, 2016, 23, 072701.	1.9	8
122	Measurements of enhanced performance in an indirect drive inertial confinement fusion experiment when reducing the contact area of the capsule support. Physics of Plasmas, 2020, 27, .	1.9	7
123	Metrics for implosion performance with enhanced energy coupling on NIF. Nuclear Fusion, 2021, 61, 116066.	3.5	7
124	Experimental room temperature hohlraum performance study on the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	6
125	Beryllium implosions at smaller case-to-capsule ratio on NIF. High Energy Density Physics, 2020, 34, 100747.	1.5	6
126	The effects of multispecies <i>Hohlraum</i> walls on stimulated Brillouin scattering, <i>Hohlraum</i> dynamics, and beam propagation. Physics of Plasmas, 2021, 28, .	1.9	6

#	Article	IF	CITATIONS
127	Simulations of symcap and layered NIF experiments with top/bottom laser asymmetry to impose P1 drive on capsules. Journal of Physics: Conference Series, 2016, 717, 012014.	0.4	5
128	Developing one-dimensional implosions for inertial confinement fusion science. High Power Laser Science and Engineering, 2016, 4, .	4.6	5
129	NIF Rugby High Foot Campaign from the design side. Journal of Physics: Conference Series, 2016, 717, 012035.	0.4	4
130	Hydroscaling indirect-drive implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .	1.9	4
131	Control of Be capsule low mode implosions symmetry at the National Ignition Facility. Journal of Physics: Conference Series, 2016, 717, 012033.	0.4	2
132	Update 2017 on Target Fabrication Requirements for High-Performance NIF Implosion Experiments. Fusion Science and Technology, 2018, 73, 83-88.	1.1	2
133	Analyses of laser-plasma interactions in NIF ignition emulator designs. Journal of Physics: Conference Series, 2010, 244, 022019.	0.4	1
134	Overview of Performance and Progress with Inertially Confined Fusion Implosions on the National Ignition Facility. , $2015, \ldots$		0
135	Performance of indirectly driven capsule implosions on NIF using adiabat-shaping. Journal of Physics: Conference Series, 2016, 717, 012045.	0.4	O