Michael D Aleo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7922718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Archives of Toxicology, 2021, 95, 149-168.	4.2	14
2	Hepatotoxicity reports in the FDA adverse event reporting system database: A comparison of drugs that cause injury via mitochondrial or other mechanisms. Acta Pharmaceutica Sinica B, 2021, 11, 3857-3868.	12.0	19
3	Moving beyond Binary Predictions of Human Drug-Induced Liver Injury (DILI) toward Contrasting Relative Risk Potential. Chemical Research in Toxicology, 2020, 33, 223-238.	3.3	49
4	A Novel Lipidomics-Based Approach to Evaluating the Risk of Clinical Hepatotoxicity Potential of Drugs in 3D Human Microtissues. Chemical Research in Toxicology, 2020, 33, 258-270.	3.3	10
5	Most Influential Physicochemical and In Vitro Assay Descriptors for Hepatotoxicity and Nephrotoxicity Prediction. Chemical Research in Toxicology, 2020, 33, 1780-1790.	3.3	3
6	Liver safety evaluation of endothelin receptor antagonists using HepatoPac ® : A single model impact assessment on hepatocellular health, function and bile acid disposition. Journal of Applied Toxicology, 2019, 39, 1192-1207.	2.8	8
7	Lens cholesterol biosynthesis inhibition: A common mechanism of cataract formation in laboratory animals by pharmaceutical products. Journal of Applied Toxicology, 2019, 39, 1348-1361.	2.8	5
8	Phase I study of PFâ€04895162, a Kv7 channel opener, reveals unexpected hepatotoxicity in healthy subjects, but not rats or monkeys: clinical evidence of disrupted bile acid homeostasis. Pharmacology Research and Perspectives, 2019, 7, e00467.	2.4	7
9	Quantitative systems toxicology (QST) reproduces species differences in PFâ€04895162 liver safety due to combined mitochondrial and bile acid toxicity. Pharmacology Research and Perspectives, 2019, 7, e00523.	2.4	12
10	Evaluation of in Vitro Mitochondrial Toxicity Assays and Physicochemical Properties for Prediction of Organ Toxicity Using 228 Pharmaceutical Drugs. Chemical Research in Toxicology, 2019, 32, 156-167.	3.3	61
11	Interpretation, Integration, and Implementation of In Vitro Assay Data: The Predictive Toxicity Challenge. Methods in Pharmacology and Toxicology, 2018, , 345-364.	0.2	2
12	Principles of precision medicine and its application in toxicology. Journal of Toxicological Sciences, 2018, 43, 565-577.	1.5	15
13	Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals. Chemical Research in Toxicology, 2017, 30, 1219-1229.	3.3	32
14	Inhibition of Hepatobiliary Transport Activity by the Antibacterial Agent Fusidic Acid: Insights into Factors Contributing to Conjugated Hyperbilirubinemia/Cholestasis. Chemical Research in Toxicology, 2016, 29, 1778-1788.	3.3	10
15	Setting Clinical Exposure Levels of Concern for Drug-Induced Liver Injury (DILI) Using Mechanistic <i>in vitro</i> Assays. Toxicological Sciences, 2015, 147, 500-514.	3.1	104
16	Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology, 2014, 60, 1015-1022.	7.3	188
17	Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes. Toxicology and Applied Pharmacology, 2013, 272, 272-280.	2.8	44
18	Improving the Odds of Success in Drug Discovery: Choosing the Best Compounds for in Vivo Toxicology Studies. Journal of Medicinal Chemistry, 2013, 56, 9771-9779.	6.4	41

MICHAEL D ALEO

#	Article	IF	CITATIONS
19	Use of Micropatterned Cocultures to Detect Compounds That Cause Drug-Induced Liver Injury in Humans. Toxicological Sciences, 2013, 132, 107-117.	3.1	180
20	1,2-Naphthoquinone Stimulates Lipid Peroxidation and Cholesterol Domain Formation in Model Membranes. , 2013, 54, 7189.		11
21	Comparisons between <i>in vitro</i> whole cell imaging and <i>in vivo</i> zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development. Drug Metabolism Reviews, 2012, 44, 127-140.	3.6	93
22	Structural Alert/Reactive Metabolite Concept as Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective Based on the Critical Examination of Trends in the Top 200 Drugs Marketed in the United States. Chemical Research in Toxicology, 2011, 24, 1345-1410.	3.3	569
23	Using an in vitro cytotoxicity assay to aid in compound selection for in vivo safety studies. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5308-5312.	2.2	61
24	Predicting safety toleration of pharmaceutical chemical leads: Cytotoxicity correlations to exploratory toxicity studiesa~†. Toxicology Letters, 2010, 197, 175-182.	0.8	51
25	A current practice for predicting ocular toxicity of systemically delivered drugs. Cutaneous and Ocular Toxicology, 2009, 28, 1-18.	1.3	22
26	An underlying role for hepatobiliary dysfunction in cyclosporine A nephrotoxicity. Toxicology and Applied Pharmacology, 2008, 230, 126-134.	2.8	7
27	Mechanistic Analysis ofS-(1,2-Dichlorovinyl)-l-cysteine-Induced Cataractogenesisin Vitro. Toxicology and Applied Pharmacology, 1997, 146, 144-155.	2.8	12