Qizhen Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7922175/publications.pdf Version: 2024-02-01

Οιζήεν ζηι

#	Article	IF	CITATIONS
1	Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. Journal of Clinical Investigation, 2006, 116, 1974-1982.	8.2	170
2	A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood, 2014, 123, 3706-3713.	1.4	145
3	Factor VIII ectopically expressed in platelets: efficacy in hemophilia A treatment. Blood, 2003, 102, 4006-4013.	1.4	143
4	Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nature Communications, 2013, 4, 2773.	12.8	102
5	Syngeneic transplantation of hematopoietic stem cells that are genetically modified to express factor VIII in platelets restores hemostasis to hemophilia A mice with preexisting FVIII immunity. Blood, 2008, 112, 2713-2721.	1.4	100
6	Factor IX ectopically expressed in platelets can be stored in α-granules and corrects the phenotype of hemophilia B mice. Blood, 2010, 116, 1235-1243.	1.4	54
7	Platelet Gene Therapy by Lentiviral Gene Delivery to Hematopoietic Stem Cells Restores Hemostasis and Induces Humoral Immune Tolerance in FIXnull Mice. Molecular Therapy, 2014, 22, 169-177.	8.2	53
8	Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells. Blood, 2014, 123, 395-403.	1.4	50
9	Targeting FVIII expression to endothelial cells regenerates a releasable pool of FVIII and restores hemostasis in a mouse model of hemophilia A. Blood, 2010, 116, 3049-3057.	1.4	48
10	Platelets as delivery systems for disease treatments. Advanced Drug Delivery Reviews, 2010, 62, 1196-1203.	13.7	47
11	Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice. Blood Advances, 2019, 3, 2700-2711.	5.2	39
12	Correction of Murine Bernard–Soulier Syndrome by Lentivirus-mediated Gene Therapy. Molecular Therapy, 2012, 20, 625-632.	8.2	31
13	Platelet-Targeted Gene Therapy for Hemophilia. Molecular Therapy - Methods and Clinical Development, 2018, 9, 100-108.	4.1	29
14	Induction of activated T follicular helper cells is critical for anti-FVIII inhibitor development in hemophilia A mice. Blood Advances, 2019, 3, 3099-3110.	5.2	28
15	The immunogenicity of platelet-derived FVIII in hemophilia A mice with or without preexisting anti-FVIII immunity. Blood, 2016, 127, 1346-1354.	1.4	21
16	TGF-β1 along with other platelet contents augments Treg cells to suppress anti-FVIII immune responses in hemophilia A mice. Blood Advances, 2016, 1, 139-151.	5.2	18
17	The impact of GPIbα on plateletâ€targeted FVIII gene therapy in hemophilia A mice with preâ€existing antiâ€FVIII immunity. Journal of Thrombosis and Haemostasis, 2019, 17, 449-459.	3.8	14
18	The severe spontaneous bleeding phenotype in a novel hemophilia A rat model is rescued by platelet FVIII expression. Blood Advances, 2020, 4, 55-65.	5.2	13

QIZHEN SHI

#	Article	IF	CITATIONS
19	Platelet Gene Therapy Promotes Targeted Peripheral Tolerance by Clonal Deletion and Induction of Antigen-Specific Regulatory T Cells. Frontiers in Immunology, 2018, 9, 1950.	4.8	12
20	The impact of von Willebrand factor on factor VIII memory immune responses. Blood Advances, 2017, 1, 1565-1574.	5.2	10
21	<i>In vivo</i> generated hematopoietic stem cells from genome edited induced pluripotent stem cells are functional in platelet-targeted gene therapy of murine hemophilia A. Haematologica, 2020, 105, e175-e179.	3.5	9
22	In vivo enrichment of genetically manipulated platelets for murine hemophilia B gene therapy. Journal of Cellular Physiology, 2021, 236, 354-365.	4.1	7
23	Platelet-Targeted FVIII Gene Therapy Restores Hemostasis and Induces Immune Tolerance for Hemophilia A. Frontiers in Immunology, 2020, 11, 964.	4.8	5
24	Thromboelastometry assessment of hemostatic properties in various murine models with coagulopathy and the effect of factor VIII therapeutics. Journal of Thrombosis and Haemostasis, 2021, 19, 2417-2427.	3.8	5
25	Platelet gene therapy induces robust immune tolerance even in a primed model via peripheral clonal deletion of antigen-specific T cells. Molecular Therapy - Nucleic Acids, 2021, 23, 719-730.	5.1	4
26	Unexpected enhancement of FVIII immunogenicity by endothelial expression in lentivirus-transduced and transgenic mice. Blood Advances, 2020, 4, 2272-2285.	5.2	3
27	Platelet-targeted hyperfunctional FIX gene therapy for hemophilia B mice even with preexisting anti-FIX immunity. Blood Advances, 2021, 5, 1224-1238.	5.2	3
28	Endothelial and Platelet FVIII/VWF Expression - Divergence in Clinical Effect in Murine Models of Hemophilia A with and without FVIII Inhibitory Antibodies Blood, 2006, 108, 3286-3286.	1.4	3
29	Association of Platelet Desialylation and Circulating Follicular Helper T Cells in Patients With Thrombocytopenia. Frontiers in Immunology, 2022, 13, 810620.	4.8	3
30	A rat model of severe VWD by elimination of the VWF gene using CRISPR/Cas9. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 64-71.	2.3	2
31	Platelet-Targeted Expression of Human BDD-FVIII Reduces Bleeding in Canine Hemophilia A Blood, 2009, 114, 691-691.	1.4	2
32	Blocking hemophilic arthropathy. Blood, 2022, 139, 2734-2735.	1.4	2
33	Ectopic Expression of Human FIX in Mouse Platelets Can Store Releasable FIX in Platelets and May Be a Potential Strategy for Gene Therapy of Hemophilia B Blood, 2007, 110, 196-196.	1.4	1
34	De Novo Synthesis & Storage of Human Factor VIII In Platelets Reduces Bleeding In Canine Hemophilia A. Blood, 2010, 116, 2198-2198.	1.4	1
35	Platelet-Targeted Expression of Coagulation Factor VIII (FVIII) Shows Efficacy for Using the Dog as a Large Animal Model for Gene Therapy of Hemophilia a. Blood, 2008, 112, 3525-3525.	1.4	1
36	A novel mouse model of type 2N VWD was developed by CRISPR/Cas9 gene editing and recapitulates human type 2N VWD. Blood Advances, 2022, 6, 2778-2790.	5.2	1

QIZHEN SHI

#	Article	IF	CITATIONS
37	Utilizing Platelets as a Targeted for Gene Therapy of Hemophilia a and Hemophilia B. Microscopy and Microanalysis, 2020, 26, 826-827.	0.4	0
38	Transgenic Targeting of Human FVIII Expression to Endothelial Cells Corrects the Murine Hemophilia A Phenotype and Re-Establishes a Releasable Pool of FVIII Together with VWF Blood, 2005, 106, 3056-3056.	1.4	0
39	Factor VIII Inhibitors: Von Willebrand Factor Makes A Difference In Vitro and In Vivo. Blood, 2010, 116, 709-709.	1.4	0
40	Lentivirus-Mediated Platelet Gene Therapy Corrects Bleeding Diathesis and Induces Immune Tolerance in Murine Hemophilia B Mice. Blood, 2012, 120, 1101-1101.	1.4	0
41	In Vivo Selection Of Genetically Manipulated Hematopoietic Stem Cells For Platelet Gene Therapy Of Hemophilia A. Blood, 2013, 122, 2329-2329.	1.4	0
42	The Immunogenicity of Platelet-Derived FVIII in Hemophilia a Mice with or without Pre-Existing Anti-FVIII Immunity. Blood, 2014, 124, 2809-2809.	1.4	0
43	The Impact of VWF on FVIII Immune Responses in Hemophilia a Mice with Pre-Existing Anti-FVIII Immunity. Blood, 2016, 128, 84-84.	1.4	0
44	In Vivo Enrichment of Genetically Manipulated Platelets for Murine Haemophilia B Gene Therapy. Blood, 2018, 132, 3483-3483.	1.4	0
45	Animal Models Demonstrate a Critical Role of Factor VIII in Par4- and Platelet-Mediated Pathology. Blood, 2019, 134, 1057-1057.	1.4	0
46	Platelet-Targeted Gene Therapy Induces Robust Immune Tolerance Even in a Primed Model Via Peripheral Clonal Deletion of CD4 and CD8 T Cells and Expansion of Treg Cells. Blood, 2020, 136, 2-2.	1.4	0