
Masaaki Morikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7922047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth Promotion of Giant Duckweed <i>Spirodela polyrhiza</i> (Lemnaceae) by <i>Ensifer</i> sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. Molecular Plant-Microbe Interactions, 2022, 35, 28-38.	2.6	12
2	Draft Genome Sequence of Bryobacteraceae Strain F-183. Microbiology Resource Announcements, 2022, 11, e0045321.	0.6	1
3	Bioremediation: From Key Enzymes to Practical Technologies. Handbook of Environmental Chemistry, 2022, , 1.	0.4	0
4	Remediation by Floating Plants. Handbook of Environmental Chemistry, 2022, , 1.	0.4	0
5	Complete Genome Sequence of <i>Luteitalea</i> sp. Strain TBR-22. Microbiology Resource Announcements, 2022, 11, e0045521.	0.6	1
6	Indigenous bacteria, an excellent reservoir of functional plant growth promoters for enhancing duckweed biomass yield on site. Chemosphere, 2021, 268, 129247.	8.2	29
7	Isolation and Characterization of Novel Plant Growth-Promoting Bacteria from the Fronds of Duckweed. Japanese Journal of Water Treatment Biology, 2021, 57, 1-9.	0.1	2
8	A cyclic lipopeptide surfactin is a species-selective Hsp90 inhibitor that suppresses cyanobacterial growth. Journal of Biochemistry, 2021, 170, 255-264.	1.7	8
9	Novel Plant-Associated Acidobacteria Promotes Growth of Common Floating Aquatic Plants, Duckweeds. Microorganisms, 2021, 9, 1133.	3.6	26
10	Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23. Chemosphere, 2020, 238, 124682.	8.2	33
11	Biosurfactants from Marine Cyanobacteria Collected in Sabah, Malaysia. Journal of Natural Products, 2020, 83, 1925-1930.	3.0	14
12	Community dynamics of duckweed-associated bacteria upon inoculation of plant growth-promoting bacteria. FEMS Microbiology Ecology, 2020, 96, .	2.7	22
13	Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses. Bioprocess and Biosystems Engineering, 2020, 43, 971-980.	3.4	30
14	Multiple biosurfactant production by <i>Aureobasidium pullulans</i> strain YTP6-14 in aqueous and heavy oil layers. Journal of General and Applied Microbiology, 2020, 66, 330-338.	0.7	2
15	Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnology for Biofuels, 2019, 12, 205.	6.2	27
16	Colonization and Competition Dynamics of Plant Growth-Promoting/Inhibiting Bacteria in the Phytosphere of the Duckweed Lemna minor. Microbial Ecology, 2019, 77, 440-450.	2.8	29
17	Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Bioresource Technology, 2018, 250, 464-473.	9.6	74
18	Biomass Production and Nutrient Removal through Cultivation of <i>Euglena gracilis</i> in Domestic Wastewater. Japanese Journal of Water Treatment Biology, 2018, 54, 105-113.	0.1	4

#	Article	IF	CITATIONS
19	Effect of Exogenous General Plant Growth Regulators on the Growth of the Duckweed Lemna minor. Frontiers in Chemistry, 2018, 6, 251.	3.6	34
20	Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent. Biotechnology for Biofuels, 2018, 11, 176.	6.2	60
21	Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed. Plant Growth Regulation, 2018, 86, 287-296.	3.4	38
22	Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters. Water Science and Technology, 2017, 76, 1418-1428.	2.5	30
23	Production of massoia lactone by Aureobasidium pullulans YTP6â€14 isolated from the Gulf of Thailand and its fragrant biosurfactant properties. Journal of Applied Microbiology, 2017, 123, 1488-1497.	3.1	19
24	Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria. Plant Physiology and Biochemistry, 2017, 118, 667-673.	5.8	27
25	Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnology for Biofuels, 2017, 10, 62.	6.2	64
26	Wewakazole B, a Cytotoxic Cyanobactin from the Cyanobacterium <i>Moorea producens</i> Collected in the Red Sea. Journal of Natural Products, 2016, 79, 1213-1218.	3.0	46
27	Production of biosurfactant by Wickerhamomyces anomalus PY189 and its application in lemongrass oil encapsulation. ScienceAsia, 2016, 42, 252.	0.5	11
28	Comparison of the Degradation Activity of Biofilm-associated Versus Planktonic Cells. , 2016, , 219-232.		0
29	Draft Genome Sequence of Acinetobacter calcoaceticus Strain P23, a Plant Growth-Promoting Bacterium of Duckweed. Genome Announcements, 2015, 3, .	0.8	1
30	Isolation and characterization of an early colonizing Rhizobium sp. R8 from a household toilet bowl. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1207-1215.	1.3	2
31	cDNA cloning and characterization of vanadium-dependent bromoperoxidases from the red alga <i>Laurencia nipponica</i> . Bioscience, Biotechnology and Biochemistry, 2014, 78, 1310-1319.	1.3	15
32	Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). Journal of Bioscience and Bioengineering, 2014, 118, 41-44.	2.2	68
33	Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23. Extremophiles, 2014, 18, 515-523.	2.3	27
34	Transformation ofiso-pentylbenzene by a biofilm-forming strain ofCandida viswanathiiTH1 isolated from oil-polluted sediments collected in coastal zones in Vietnam. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 777-786.	1.7	3
35	Draft Genome Sequence of Geobacillus thermoleovorans Strain B23. Genome Announcements, 2013, 1, .	0.8	7
36	Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis–rhizosphere bacteria association. Water Science and Technology, 2013, 68, 522-529.	2.5	39

#	Article	IF	CITATIONS
37	Production and Characterization of a Biosurfactant from <i>Cyberlindnera samutprakarnensis</i> JP52 ^T . Bioscience, Biotechnology and Biochemistry, 2013, 77, 2362-2370.	1.3	29
38	Isolation and Characterization of a Thermotolerant Ammonia-Oxidizing Bacterium <i>Nitrosomonas</i> sp. JPCCT2 from a Thermal Power Station. Microbes and Environments, 2013, 28, 432-435.	1.6	16
39	Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms. Chemosphere, 2012, 87, 226-233.	8.2	63
40	Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants. International Journal of Molecular Sciences, 2011, 12, 141-172.	4.1	204
41	A Truncated Form of SpoT, Including the ACT Domain, Inhibits the Production of Cyclic Lipopeptide Arthrofactin, and Is Associated with Moderate Elevation of Guanosine 3′,5′-Bispyrophosphate Level inPseudomonassp. MIS38. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1880-1888.	1.3	0
42	Dioxygen activation responsible for oxidation of aliphatic and aromatic hydrocarbon compounds: current state and variants. Applied Microbiology and Biotechnology, 2010, 87, 1595-1603.	3.6	15
43	Gene cloning and characterization of an aldehyde dehydrogenase from long-chain alkane-degrading Geobacillus thermoleovorans B23. Extremophiles, 2010, 14, 33-39.	2.3	22
44	Preparation of ruthenium-containing sheet composites using a papermaking technique for selective oxidation of alcohol. Chemical Engineering Journal, 2010, 157, 311-315.	12.7	5
45	Identification and Characterization of the Genes Responsible for the Production of the Cyclic Lipopeptide Arthrofactin by <i>Pseudomonas</i> sp. MIS38. Bioscience, Biotechnology and Biochemistry, 2010, 74, 992-999.	1.3	27
46	The Role of Urease Activity on Biofilm Formation by <i>Staphylococcus</i> sp. T-02 Isolated from the Toilet Bowl. Bioscience, Biotechnology and Biochemistry, 2010, 74, 583-589.	1.3	4
47	Sustainable Biodegradation of Phenol by <i>Acinetobacter calcoaceticus</i> P23 Isolated from the Rhizosphere of Duckweed <i>Lemna aoukikusa</i> . Environmental Science & Technology, 2010, 44, 6470-6474.	10.0	159
48	Alkane inducible proteins in Geobacillus thermoleovorans B23. BMC Microbiology, 2009, 9, 60.	3.3	22
49	Biofilm formation and proteolytic activities of <i>Pseudoalteromonas</i> bacteria that were isolated from fish farm sediments. Microbial Biotechnology, 2009, 2, 361-369.	4.2	34
50	Autochthonous bioaugmentation and its possible application to oil spills. World Journal of Microbiology and Biotechnology, 2009, 25, 1519-1528.	3.6	92
51	Flexible exportation mechanisms of arthrofactin inPseudomonassp. MIS38. Journal of Applied Microbiology, 2009, 107, 157-166.	3.1	17
52	Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnology Letters, 2008, 30, 1447-1452.	2.2	44
53	A turbine oil-degrading bacterial consortium from soils of oil fields and its characteristics. International Biodeterioration and Biodegradation, 2008, 61, 223-232.	3.9	26
54	Production of Sophorolipid Biosurfactant by <i>Pichia anomala</i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 2061-2068.	1.3	85

#	Article	IF	CITATIONS
55	Title is missing!. Kagaku To Seibutsu, 2008, 46, 682-688.	0.0	Ο
56	Gentisate 1,2-Dioxygenase fromXanthobacter polyaromaticivorans127W. Bioscience, Biotechnology and Biochemistry, 2007, 71, 192-199.	1.3	22
57	Functional Analysis of A Pyoverdine Synthetase from <i>Pseudomonas</i> sp. MIS38. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2002-2009.	1.3	6
58	In Vivo Characterization of Tandem C-Terminal Thioesterase Domains in Arthrofactin Synthetase. ChemBioChem, 2007, 8, 501-512.	2.6	31
59	Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. Journal of Bioscience and Bioengineering, 2006, 101, 1-8.	2.2	211
60	Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology (United) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
61	Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. Journal of General and Applied Microbiology, 2006, 52, 215-222.	0.7	51
62	Crystal structure of TBP-interacting protein (Tk-TIP26) and implications for its inhibition mechanism of the interaction between TBP and TATA-DNA. Protein Science, 2006, 15, 152-161.	7.6	5
63	Gene cloning and in vivo characterization of a dibenzothiophene dioxygenase from Xanthobacter polyaromaticivorans. Applied Microbiology and Biotechnology, 2006, 69, 672-681.	3.6	11
64	Common mechanisms regulating expression of rice aleurone genes that contribute to the primary response for gibberellin. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 478-490.	2.4	11
65	Ca2+-Dependent Maturation of Subtilisin from a Hyperthermophilic Archaeon, Thermococcus kodakaraensis: the Propeptide Is a Potent Inhibitor of the Mature Domain but Is Not Required for Its Folding. Applied and Environmental Microbiology, 2006, 72, 4154-4162.	3.1	45
66	Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases. FEMS Microbiology Letters, 2005, 252, 143-151.	1.8	45

66	Microbiology Letters, 2005, 252, 143-151.	1.8	45
67	Gene Cloning, Overproduction, and Characterization of Thermolabile Alkaline Phosphatase from a Psychrotrophic Bacterium. Bioscience, Biotechnology and Biochemistry, 2005, 69, 364-373.	1.3	21
68	Structure of RadB recombinase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1: an implication for the formation of a near-7-fold helical assembly. Nucleic Acids Research, 2005, 33, 3412-3423.	14.5	13
69	Isolation and characterization of Rhodococcus sp. strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures. Journal of Biotechnology, 2005, 115, 129-136.	3.8	28
70	Description of <i>Thermococcus kodakaraensis</i> sp. nov., a well studied hyperthermophilic archaeon previously reported as <i>Pyrococcus</i> sp. KOD1. Archaea, 2004, 1, 263-267.	2.3	261
71	Gene Cloning and Biochemical Characterizations of Thermostable Ribonuclease HIII fromBacillus stearothermophilus. Bioscience, Biotechnology and Biochemistry, 2004, 68, 2138-2147.	1.3	15
72	Mutational and Structural-Based Analyses of the Osmolyte Effect on Protein Stability. Journal of Biochemistry, 2004, 135, 701-708.	1.7	10

5

#	Article	IF	CITATIONS
73	Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. FEBS Journal, 2004, 271, 1372-1381.	0.2	56
74	Cleavage of Various Peptides with Pitrilysin fromEscherichia coli: Kinetic Analyses Using Î ² -Endorphin and Its Derivatives. Bioscience, Biotechnology and Biochemistry, 2004, 68, 2128-2137.	1.3	15
75	Isolation and Characterization ofXanthobacter polyaromaticivoranssp. nov. 127W That Degrades Polycyclic and Heterocyclic Aromatic Compounds under Extremely Low Oxygen Conditions. Bioscience, Biotechnology and Biochemistry, 2004, 68, 557-564.	1.3	34
76	Kinetically Robust Monomeric Protein from a Hyperthermophileâ€. Biochemistry, 2004, 43, 13859-13866.	2.5	29
77	Cloning and Characterization of the Gene Cluster Encoding Arthrofactin Synthetase from Pseudomonas sp. MIS38. Chemistry and Biology, 2003, 10, 869-880.	6.0	108
78	Application of a two-liquid system to sitting-drop vapour-diffusion protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 194-196.	2.5	35
79	Crystallization and preliminary X-ray analysis of TBP-interacting protein from the hyperthermophilic archaeonThermococcus kodakaraensisstrain KOD1. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 372-374.	2.5	3
80	Dispensability of Glutamic Acid 48 and Aspartic Acid 134 for Mn2+-Dependent Activity ofEscherichia coliRibonuclease HIâ€. Biochemistry, 2003, 42, 3366-3374.	2.5	21
81	Laser Irradiated Growth of Protein Crystal. Japanese Journal of Applied Physics, 2003, 42, L798-L800.	1.5	124
82	Production and Characterization of Biosurfactants fromBacillus licheniformisF2.2. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1239-1244.	1.3	88
83	Site-specific cleavage of MS2 RNA by a thermostable DNA-linked RNase H. Protein Engineering, Design and Selection, 2002, 15, 683-688.	2.1	3
84	Cleavage of a DNA-RNA-DNA/DNA chimeric substrate containing a single ribonucleotide at the DNA-RNA junction with prokaryotic RNases HII. FEBS Letters, 2002, 531, 204-208.	2.8	60
85	Oleomonas sagaranensis gen. nov., sp. nov., represents a novel genus in the α-Proteobacteria. FEMS Microbiology Letters, 2002, 217, 255-261.	1.8	1
86	Role of repetitive nine-residue sequence motifs in secretion, enzymatic activity, and protein conformation of a family I.3 lipase. Journal of Bioscience and Bioengineering, 2002, 93, 157-164.	2.2	31
87	Importance of an N-terminal extension in ribonuclease HII from Bacillus stearothermophilus for substrate binding. Journal of Bioscience and Bioengineering, 2002, 93, 170-175.	2.2	9
88	Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles, 2002, 6, 499-506.	2.3	103
89	Oleomonas sagaranensisgen. nov., sp. nov., represents a novel genus in the α-Proteobacteria. FEMS Microbiology Letters, 2002, 217, 255-261.	1.8	29
90	Role of Repetitive Nine-Residue Sequence Motifs in Secretion, Enzymatic Activity, and Protein Conformation of a Family I.3 Lipase. Journal of Bioscience and Bioengineering, 2002, 93, 157-164.	2.2	13

#	Article	IF	CITATIONS
91	Importance of an N-Terminal Extension in Ribonuclease HII from Bacillus stearothermophilus for Substrate Binding. Journal of Bioscience and Bioengineering, 2002, 93, 170-175.	2.2	2
92	Corrigendum to: Identification of the histidine and aspartic acid residues essential for enzymatic activity of a family I.3 lipase by site-directed mutagenesis (FEBS 24210). FEBS Letters, 2001, 497, 174-174.	2.8	0
93	Ca2+-induced folding of a family I.3 lipase with repetitive Ca2+binding motifs at the C-terminus. FEBS Letters, 2001, 509, 17-21.	2.8	32
94	Thiol protease from Thermococcus kodakaraensis KOD1. Methods in Enzymology, 2001, 330, 424-433.	1.0	6
95	[22] RecA/Rad51 homolog from Thermococcus kodakaraensis KOD 1. Methods in Enzymology, 2001, 334, 261-270.	1.0	Ο
96	Isolation and characterization of psychrotrophic bacteria from oil-reservoir water and oil sands. Applied Microbiology and Biotechnology, 2001, 55, 794-800.	3.6	43
97	Interaction of TIP26 from a hyperthermophilic archaeon with TFB/TBP/DNA ternary complex. Extremophiles, 2001, 5, 177-182.	2.3	9
98	Catalytic center of an archaeal type 2 ribonuclease H as revealed by Xâ€ray crystallographic and mutational analyses. Protein Science, 2001, 10, 707-714.	7.6	70
99	Strong nucleic acid binding to the Escherichia coli RNase HI mutant with two arginine residues at the active site. BBA - Proteins and Proteomics, 2001, 1547, 135-142.	2.1	4
100	Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. Journal of Bioscience and Bioengineering, 2001, 91, 64-70.	2.2	86
101	Gene Cloning of an alcohol dehydrogenase from thermophilic alkane-degrading Bacillus thermoleovorans B23. Journal of Bioscience and Bioengineering, 2001, 91, 100-102.	2.2	7
102	Active Subtilisin-Like Protease from a Hyperthermophilic Archaeon in a Form with a Putative Prosequence. Applied and Environmental Microbiology, 2001, 67, 2445-2452.	3.1	68
103	Heat labile ribonuclease HI from a psychrotrophic bacterium: gene cloning, characterization and site-directed mutagenesis. Protein Engineering, Design and Selection, 2001, 14, 975-982.	2.1	21
104	Stabilities of Chimeras of Hyperthermophilic and Mesophilic Glycerol Kinases Constructed by DNA Shuffling Journal of Bioscience and Bioengineering, 2001, 91, 551-556.	2.2	8
105	Isolation and Characterization of Long-Chain-Alkane Degrading Bacillus thermoleovorans from Deep Subterranean Petroleum Reservoirs Journal of Bioscience and Bioengineering, 2001, 91, 64-70.	2.2	37
106	Gene Cloning of an Alcohol Dehydrogenase from Thermophilic Alkane-Degrading Bacillus thermoleovorans B23 Journal of Bioscience and Bioengineering, 2001, 91, 100-102.	2.2	4
107	Characterization of Ribonuclease HII from Escherichia coli Overproduced in a Soluble Form. Journal of Biochemistry, 2000, 127, 895-899.	1.7	43
108	Crystallization and preliminary X-ray study ofPk-REC from a hyperthermophilic archaeon,Pyrococcus kodakaraensisKOD1. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 648-649.	2.5	1

#	Article	IF	CITATIONS
109	Overproduction in Escherichia coli, purification and characterization of a family I.3 lipase from Pseudomonas sp. MIS38. BBA - Proteins and Proteomics, 2000, 1478, 201-210.	2.1	59
110	Efficient cleavage of RNA at high temperatures by a thermostable DNA-linked ribonuclease H. Protein Engineering, Design and Selection, 2000, 13, 881-886.	2.1	3
111	A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1488, 211-218.	2.4	394
112	Identification of the histidine and aspartic acid residues essential for enzymatic activity of a family I.3 lipase by site-directed mutagenesis. FEBS Letters, 2000, 483, 139-142.	2.8	27
113	Catalysis byEscherichia coliRibonuclease HI Is Facilitated by a Phosphate Group of the Substrate. Biochemistry, 2000, 39, 13939-13944.	2.5	34
114	Enhancement of the Enzymatic Activity of Ribonuclease HI fromThermus thermophilusHB8 with a Suppressor Mutation Methodâ€. Biochemistry, 2000, 39, 13285-13294.	2.5	20
115	Gene cloning and characterization of aldehyde dehydrogenase from a petroleum-degrading bacterium, strain HD-1. Journal of Bioscience and Bioengineering, 1999, 88, 7-11.	2.2	16
116	Molecular diversities of RNases H. Journal of Bioscience and Bioengineering, 1999, 88, 12-19.	2.2	108
117	Characterization of petroleum-degrading bacteria from oil-contaminated sites in Vietnam. Journal of Bioscience and Bioengineering, 1999, 88, 100-102.	2.2	42
118	A unique DNase activity shares the active site with ATPase activity of the RecA/Rad51 homologue (Pk-REC) from a hyperthermophilic archaeon. FEBS Letters, 1999, 445, 111-114.	2.8	9
119	Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis. FEBS Letters, 1999, 454, 262-266.	2.8	15
120	Isolation of TBP-interacting protein (TIP) from a hyperthermophilic archaeon that inhibits the binding of TBP to TATA-DNA. FEBS Letters, 1999, 457, 38-42.	2.8	15
121	Identification of the Genes Encoding Mn ²⁺ -Dependent RNase HII and Mg ²⁺ -Dependent RNase HIII from <i>Bacillus subtilis</i> :  Classification of RNases H into Three Families. Biochemistry, 1999, 38, 605-618.	2.5	163
122	Identification of the Gene Encoding Esterase, a Homolog of Hormone-Sensitive Lipase, from an Oil-Degrading Bacterium, Strain HD-1. Journal of Biochemistry, 1999, 126, 731-737.	1.7	6
123	Production of alkane and alkene from CO2 by a petroleum-degrading bacterium. Journal of Bioscience and Bioengineering, 1998, 85, 243-245.	0.9	10
124	Stabilization of Ribonuclease HI fromThermusthermophilusHB8 by the Spontaneous Formation of an Intramolecular Disulfide Bondâ€. Biochemistry, 1998, 37, 12640-12648.	2.5	6
125	Thermostable glycerol kinase from a hyperthermophilic archaeon: gene cloning and characterization of the recombinant enzyme. Protein Engineering, Design and Selection, 1998, 11, 1219-1227.	2.1	27
126	Gene Cloning and Characterization of Recombinant RNase HII from a Hyperthermophilic Archaeon. Journal of Bacteriology, 1998, 180, 6207-6214.	2.2	34

#	Article	IF	CITATIONS
127	Gene Cloning and Characterization of Recombinant RNase HII from a Hyperthermophilic Archaeon. Journal of Bacteriology, 1998, 180, 6207-6214.	2.2	9
128	Characterization of a RecA/RAD51 homologue from the hyperthermophilic archaeon Pyrococcus sp. KOD1. Nucleic Acids Research, 1997, 25, 719-726.	14.5	32
129	Gene cloning and characterization of recombinant ribose phosphate pyrophosphokinase from a hyperthermophilic archaeon. Journal of Bioscience and Bioengineering, 1997, 83, 412-418.	0.9	8
130	Anaerobic degradation and production of alkane/alkene by a new facultative chemoautotrophic bacterium strain HD-1. , 1997, , 401-414.		0
131	Biological oxidation of alkane to alkene under anaerobic conditions. Journal of Bioscience and Bioengineering, 1996, 82, 309-311.	0.9	18
132	A RecA / RAD51 homologue from a hyperthermophilic archaeon retains the major RecA domain only. Molecular Genetics and Genomics, 1996, 253, 397-400.	2.4	32
133	Gene cloning and characterization of thermostable peptidyl prolyl cis-trans isomerase (PPIase) from Bacillus stearothermophilus SIC1. Journal of Bioscience and Bioengineering, 1995, 79, 87-94.	0.9	10
134	An abnormally acidic TATA-binding protein from a hyperthermophilic archaeon. Gene, 1995, 166, 139-143.	2.2	27
135	Isolation of a New Mixotrophic Bacterium Which can Fix CO2 and Assimilate Aliphatic and Aromatic Hydrocarbons Anaerobically. , 1995, , 16-27.		0
136	Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Applied and Environmental Microbiology, 1994, 60, 4559-4566.	3.1	279
137	Isolation of a new mixotrophic bacterium which can fix C02 and assimilate aliphatic and aromatic hydrocarbons anaerobically. Journal of Bioscience and Bioengineering, 1993, 76, 280-283.	0.9	19
138	A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. Journal of Bacteriology, 1993, 175, 6459-6466.	2.2	312
139	Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. Journal of Bioscience and Bioengineering, 1992, 74, 255-261.	0.9	97
140	A structural requirement in the subsite F of lysozyme. The role of arginine 115 in human lysozyme revealed by site-directed mutagenesis. FEBS Journal, 1989, 179, 573-579.	0.2	11
141	Engineering of human lysozyme as a polyelectrolyte by the alteration of molecular surface charge. Protein Engineering, Design and Selection, 1988, 2, 49-54.	2.1	44
142	Engineering of the active site of human lysozyme: conversion of aspartic acid 53 to glutamic acid and tyrosine 63 to tryptophan or phenylalanine. BBA - Proteins and Proteomics, 1987, 911, 376-380.	2.1	17
143	The roles of conserved aromatic amino-acid residues in the active site of human lysozyme: a site-specific mutagenesis study. BBA - Proteins and Proteomics, 1987, 916, 66-75.	2.1	22