Congming Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920613/publications.pdf

Version: 2024-02-01

		126907	138484
65	3,744	33	58
papers	citations	h-index	g-index
65	65	65	3486
63	0.3	03	3400
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology, 2019, 4, 1450-1456.	13.3	455
2	Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nature Microbiology, 2017, 2, 16260.	13.3	347
3	Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infectious Diseases, The, 2016, 16, 293.	9.1	230
4	Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. International Journal of Food Microbiology, 2013, 163, 14-18.	4.7	162
5	Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nature Microbiology, 2018, 3, 1054-1062.	13.3	139
6	Prevalence and Dissemination of <i>oqxAB</i> in <i>Escherichia coli</i> Isolates from Animals, Farmworkers, and the Environment. Antimicrobial Agents and Chemotherapy, 2010, 54, 4219-4224.	3.2	130
7	First Report of the Multidrug Resistance Genecfrin Enterococcus faecalis of Animal Origin. Antimicrobial Agents and Chemotherapy, 2012, 56, 1650-1654.	3.2	118
8	Co-location of the oxazolidinone resistance genes <i>optrA</i> and <i>cfr</i> on a multiresistance plasmid from <i>Staphylococcus sciuri</i> li>. Journal of Antimicrobial Chemotherapy, 2016, 71, 1474-1478.	3.0	113
9	Rapid rise of the ESBL and <i>mcr-1</i> genes in <i>Escherichia coli</i> of chicken origin in China, 2008–2014. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	101
10	Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clinical Microbiology Reviews, 2021, 34, e0018820.	13.6	95
11	Distribution of the Multidrug Resistance Gene <i>cfr</i> in Staphylococcus Species Isolates from Swine Farms in China. Antimicrobial Agents and Chemotherapy, 2012, 56, 1485-1490.	3.2	88
12	Inter-host Transmission of Carbapenemase-Producing <i>Escherichia coli</i> among Humans and Backyard Animals. Environmental Health Perspectives, 2019, 127, 107009.	6.0	85
13	Transferable Multiresistance Plasmids Carrying <i>cfr</i> in Enterococcus spp. from Swine and Farm Environment. Antimicrobial Agents and Chemotherapy, 2013, 57, 42-48.	3.2	78
14	Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends in Microbiology, 2015, 23, 44-54.	7.7	76
15	Tracking Campylobacter contamination along a broiler chicken production chain from the farm level to retail in China. International Journal of Food Microbiology, 2014, 181, 77-84.	4.7	72
16	First Report of the Multiresistance Gene <i>cfr</i> in Streptococcus suis. Antimicrobial Agents and Chemotherapy, 2013, 57, 4061-4063.	3.2	71
17	Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Environmental Microbiology, 2020, 22, 2469-2484.	3.8	68
18	Occurrence of Plasmid- and Chromosome-Carried <i>mcr-1</i> in Waterborne Enterobacteriaceae in China. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	65

#	Article	IF	Citations
19	Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. Journal of Antimicrobial Chemotherapy, 2012, 67, 1094-1098.	3.0	62
20	Characterization of pig-associated methicillin-resistant Staphylococcus aureus. Veterinary Microbiology, 2017, 201, 183-187.	1.9	62
21	Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong province of China, 2009 and 2012. International Journal of Food Microbiology, 2014, 180, 30-38.	4.7	58
22	Plasmid-mediated tigecycline-resistant gene <i>tet</i> (X4) in <i>Escherichia coli</i> from food-producing animals, China, 2008–2018. Emerging Microbes and Infections, 2019, 8, 1524-1527.	6.5	58
23	Heterogeneous and Flexible Transmission of $\langle i \rangle$ mcr- $1 \langle i \rangle$ in Hospital-Associated Escherichia coli. MBio, 2018, 9, .	4.1	54
24	Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015. Veterinary Microbiology, 2017, 203, 49-55.	1.9	53
25	Contaminated in-house environment contributes to the persistence and transmission of NDM-producing bacteria in a Chinese poultry farm. Environment International, 2020, 139, 105715.	10.0	51
26	Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China. Veterinary Microbiology, 2012, 159, 53-59.	1.9	50
27	Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. International Journal of Medical Microbiology, 2013, 303, 84-87.	3.6	49
28	Prevalence, antimicrobial resistance profiling and genetic diversity of Campylobacter jejuni and Campylobacter coli isolated from broilers at slaughter in China. Food Control, 2016, 69, 160-170.	5.5	44
29	Detection of the staphylococcal multiresistance gene cfr in Macrococcus caseolyticus and Jeotgalicoccus pinnipedialis. Journal of Antimicrobial Chemotherapy, 2012, 67, 1824-1827.	3.0	43
30	Antimicrobial Resistance among Staphylococci of Animal Origin. Microbiology Spectrum, 2018, 6, .	3.0	41
31	Genetic environment of the multi-resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. International Journal of Medical Microbiology, 2014, 304, 257-261.	3.6	36
32	Prevalence and antimicrobial resistance of Salmonella isolated from an integrated broiler chicken supply chain in Qingdao, China. Food Control, 2016, 62, 270-276.	5.5	36
33	Genomic epidemiology of animal-derived tigecycline-resistant Escherichia coli across China reveals recent endemic plasmid-encoded tet(X4) gene. Communications Biology, 2020, 3, 412.	4.4	36
34	Prevalence, etiology, and economic impact of clinical mastitis on large dairy farms in China. Veterinary Microbiology, 2020, 242, 108570.	1.9	34
35	The prevalence of pathogens causing bovine mastitis and their associated risk factors in 15 large dairy farms in China: An observational study. Veterinary Microbiology, 2020, 247, 108757.	1.9	34
36	Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China. Nature Food, 2022, 3, 197-205.	14.0	34

#	Article	IF	CITATIONS
37	Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet animals and veterinary staff in China. Veterinary Journal, 2011, 190, e125-e129.	1.7	33
38	Presence and molecular characteristics of oxazolidinone resistance in staphylococci from household animals in rural China. Journal of Antimicrobial Chemotherapy, 2018, 73, 1194-1200.	3.0	32
39	Small Antimicrobial Resistance Plasmids in Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC398. Frontiers in Microbiology, 2018, 9, 2063.	3.5	30
40	Mobile lincosamide resistance genes in staphylococci. Plasmid, 2018, 99, 22-31.	1.4	29
41	Investigation of Antimicrobial Resistance in Escherichia coli and Enterococci Isolated from Tibetan Pigs. PLoS ONE, 2014, 9, e95623.	2.5	28
42	Genomic analysis of Staphylococcus aureus along a pork production chain and in the community, Shandong Province, China. International Journal of Antimicrobial Agents, 2019, 54, 8-15.	2.5	21
43	Prevalence and Characteristics of Extended-Spectrum \hat{I}^2 -Lactamase and Plasmid-Mediated Fluoroquinolone Resistance Genes in Escherichia coli Isolated from Chickens in Anhui Province, China. PLoS ONE, 2014, 9, e104356.	2.5	20
44	Investigation of Haemophilus parasuis from healthy pigs in China. Veterinary Microbiology, 2019, 231, 40-44.	1.9	20
45	Distinct mechanisms of acquisition of mcr-1 –bearing plasmid by Salmonella strains recovered from animals and food samples. Scientific Reports, 2017, 7, 13199.	3.3	17
46	Mobile oxazolidinone/phenicol resistance gene optrA in chicken Clostridium perfringens. Journal of Antimicrobial Chemotherapy, 2020, 75, 3067-3069.	3.0	17
47	Prevalence and antimicrobial susceptibility of Clostridium perfringens in chickens and pigs from Beijing and Shanxi, China. Veterinary Microbiology, 2021, 252, 108932.	1.9	15
48	Mequindox resistance and in vitro efficacy in animal-derived Escherichia coli strains. Veterinary Microbiology, 2015, 177, 341-346.	1.9	14
49	Molecular basis of rifampicin resistance in multiresistant porcine livestock-associated MRSA: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 3313-3315.	3.0	14
50	Structural diversity of the ISCR2-mediated rolling-cycle transferable unit carrying tet(X4). Science of the Total Environment, 2022, 826, 154010.	8.0	14
51	Dissemination of erm (B) and its associated multidrug-resistance genomic islands in Campylobacter from 2013 to 2015. Veterinary Microbiology, 2017, 204, 20-24.	1.9	12
52	Clonal relationship of <i>tet</i> (X4)-positive <i>Escherichia coli</i> ST761 isolates between animals and humans. Journal of Antimicrobial Chemotherapy, 2022, 77, 2153-2157.	3.0	12
53	Co-existence of two novel phosphoethanolamine transferase gene variants in AeromonasÂjandaei from retail fish. International Journal of Antimicrobial Agents, 2020, 55, 105856.	2.5	11
54	Comparative analysis of genomic characteristics, fitness and virulence of MRSA ST398 and ST9 isolated from China and Germany. Emerging Microbes and Infections, 2021, 10, 1481-1494.	6.5	11

#	Article	IF	CITATIONS
55	Evolution and genomic insight into methicillin-resistant <i>Staphylococcus aureus</i> ST9 in China. Journal of Antimicrobial Chemotherapy, 2021, 76, 1703-1711.	3.0	11
56	Surveillance of antimicrobial resistance in Escherichia coli and enterococci from food products at retail in Beijing, China. Food Control, 2021, 119, 107483.	5.5	9
57	Novel pseudo-staphylococcal cassette chromosome <i>mec</i> element (φSCC <i>mec</i> T55) in MRSA ST9. Journal of Antimicrobial Chemotherapy, 2019, 74, 819-820.	3.0	8
58	Development of Multiplex-Mismatch Amplification Mutation-PCR Assay for Simultaneous Detection of <i>Campylobacter jejuni</i> and Mutation in <i>gyrA</i> Gene Related to Fluoroquinolone Resistance. Foodborne Pathogens and Disease, 2016, 13, 642-645.	1.8	7
59	Prevalence and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from retail yak butter in Tibet, China. Journal of Dairy Science, 2021, 104, 9596-9606.	3.4	7
60	Rational Use of Danofloxacin for Treatment of Mycoplasma gallisepticum in Chickens Based on the Clinical Breakpoint and Lung Microbiota Shift. Antibiotics, 2022, 11, 403.	3.7	7
61	A novel small tet(T)–tet(L)–aadD-carrying plasmid from MRSA and MSSA ST9 isolates of swine origin. Journal of Antimicrobial Chemotherapy, 2019, 74, 2462-2464.	3.0	6
62	Comparative Metabolism of Mequindox in Liver Microsomes, Hepatocytes, and Intestinal Microflora of Chicken. Analytical Letters, 2012, 45, 1749-1763.	1.8	4
63	Transmission of carbapenem resistance between human and animal NDM-positive Escherichia coli strains. Engineering, 2022, , .	6.7	3
64	Antimicrobial Resistance among Staphylococci of Animal Origin. , 0, , 127-157.		2
65	Molecular Epidemiology of Klebsiella pneumoniae from Clinical Bovine Mastitis in Northern Area of China, 2018–2019. Engineering, 2022, 10, 146-154.	6.7	2