Mike S Fowler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920193/publications.pdf

Version: 2024-02-01

50 papers

2,214 citations

20 h-index 233421 45 g-index

51 all docs

51 docs citations

51 times ranked

3854 citing authors

#	Article	IF	CITATIONS
1	Metabolic responses of two pioneer wood decay fungi to diurnally cycling temperature. Journal of Ecology, 2022, 110, 68-79.	4.0	4
2	Stress-resistance traits disrupt the plant economics - decomposition relationship across environmental gradients in salt marshes. Estuarine, Coastal and Shelf Science, 2021, 258, 107391.	2.1	1
3	Turning defence into offence? Intrusion of cladoceran brood chambers by a green alga leads to reproductive failure. Royal Society Open Science, 2020, 7, 200249.	2.4	1
4	Incorporating alternative interaction modes, forbidden links and traitâ€based mechanisms increases the minimum trait dimensionality of ecological networks. Methods in Ecology and Evolution, 2020, 11, 1663-1672.	5.2	2
5	Multiple trait dimensions mediate stress gradient effects on plant biomass allocation, with implications for coastal ecosystem services. Journal of Ecology, 2020, 108, 1227-1240.	4.0	15
6	Grazing reduces bee abundance and diversity in saltmarshes by suppressing flowering of key plant species. Agriculture, Ecosystems and Environment, 2020, 291, 106760.	5.3	18
7	Recruitment and facilitation in Pinus hartwegii, a Mexican alpine treeline ecotone, with potential responses to climate warming. Trees - Structure and Function, 2019, 33, 1087-1100.	1.9	14
8	Environmental degradation amplifies species $\hat{a} \in \mathbb{N}$ responses to temperature variation in a trophic interaction. Journal of Animal Ecology, 2019, 88, 1657-1669.	2.8	5
9	Reversible colony formation and the associated costs in Scenedesmus obliquus. Journal of Plankton Research, 2019, 41, 419-429.	1.8	14
10	The predictability of ecological stability in a noisy world. Nature Ecology and Evolution, 2019, 3, 251-259.	7.8	35
11	Intraspecific Root Trait Variability Along Environmental Gradients Affects Salt Marsh Resistance to Lateral Erosion. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	30
12	Predicting fungal community dynamics driven by competition for space. Fungal Ecology, 2019, 41, 13-22.	1.6	9
13	Functional diversity of predators and parasitoids does not explain aphid biocontrol efficiency. BioControl, 2019, 64, 303-313.	2.0	6
14	The colour of environmental fluctuations associated with terrestrial animal population dynamics. Global Ecology and Biogeography, 2019, 28, 118-130.	5.8	8
15	Natural enemy composition rather than richness determines pest suppression. BioControl, 2018, 63, 575-584.	2.0	16
16	Optimising physiochemical control of invasive Japanese knotweed. Biological Invasions, 2018, 20, 2091-2105.	2.4	31
17	Functional responses of cougars (<i>Puma concolor</i>) in a multiple preyâ€species system. Integrative Zoology, 2018, 13, 84-93.	2.6	12
18	Multiple dimensions of biodiversity drive human interest in tide pool communities. Scientific Reports, 2018, 8, 15234.	3.3	21

#	Article	IF	Citations
19	Livestock grazing alters multiple ecosystem properties and services in salt marshes: a metaâ€analysis. Journal of Applied Ecology, 2017, 54, 1395-1405.	4.0	96
20	Top-down and bottom-up control on cougar and its prey in a central Mexican natural reserve. European Journal of Wildlife Research, 2017, 63, 1.	1.4	5
21	Boomâ€bust dynamics in biological invasions: towards an improved application of the concept. Ecology Letters, 2017, 20, 1337-1350.	6.4	143
22	Navigating the complexity of ecological stability. Ecology Letters, 2016, 19, 1172-1185.	6.4	401
23	Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?. Ecological Modelling, 2016, 326, 63-74.	2.5	66
24	Testing for effects of climate change on competitive relationships and coexistence between two bird species. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141958.	2.6	39
25	The form of direct interspecific competition modifies secondary extinction patterns in multiâ€trophic food webs. Oikos, 2013, 122, 1730-1738.	2.7	11
26	Colonization, covariance and colour: Environmental and ecological drivers of diversity–stability relationships. Journal of Theoretical Biology, 2013, 324, 32-41.	1.7	12
27	Mischaracterising density dependence biases estimated effects of coloured covariates on population dynamics. Population Ecology, 2013, 55, 183-192.	1.2	8
28	Ecological and evolutionary implications of food subsidies from humans. Ecology Letters, 2013, 16, 1501-1514.	6.4	563
29	Confounding Environmental Colour and Distribution Shape Leads to Underestimation of Population Extinction Risk. PLoS ONE, 2013, 8, e55855.	2.5	12
30	Species dynamics alter community diversity–biomass stability relationships. Ecology Letters, 2012, 15, 1387-1396.	6.4	30
31	Extinction cascades and the distribution of species interactions. Oikos, 2010, 119, 864-873.	2.7	27
32	Recovery of anuran community diversity following habitat replacement. Journal of Applied Ecology, 2010, 47, 148-156.	4.0	28
33	Community stability under different correlation structures of species' environmental responses. Journal of Theoretical Biology, 2009, 261, 379-387.	1.7	18
34	Density dependent dispersal decisions and the Allee effect. Oikos, 2009, 118, 604-614.	2.7	15
35	When can we distinguish between neutral and nonâ€neutral processes in community dynamics under ecological drift?. Ecology Letters, 2009, 12, 909-919.	6.4	49
36	Increasing community size and connectance can increase stability in competitive communities. Journal of Theoretical Biology, 2009, 258, 179-188.	1.7	29

#	Article	IF	Citations
37	Ecological and evolutionary dynamics under coloured environmental variation. Trends in Ecology and Evolution, 2009, 24, 555-563.	8.7	161
38	Detecting compensatory dynamics in competitive communities under environmental forcing. Oikos, 2008, 117, 1907-1911.	2.7	40
39	The structure and strength of environmental variation modulate covariance patterns. A reply to Houlahan et al. 2008. Oikos, 2008, 117, 1914-1914.	2.7	5
40	Community extinction patterns in coloured environments. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1775-1783.	2.6	36
41	Population synchrony in small-world networks. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 435-442.	2.6	31
42	Extinctions in competitive communities forced by coloured environmental variation. Oikos, 2007, 116, 439-448.	2.7	24
43	Environment Forcing Populations. , 2007, , 89-110.		2
44	Why negatives should be viewed as positives. Nature, 2006, 439, 782-782.	27.8	3
45	Simple laboratory tests of ecological theories: What we can learn from them, and when we should be cautious. Journal of Biosciences, 2006, 31, 177-179.	1.1	0
46	The impacts of different management strategies and environmental forcing in ecological communities. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2491-2499.	2.6	6
47	Interactions between maternal effects and dispersal. Oikos, 2005, 110, 81-90.	2.7	19
48	Population Dynamic Consequences of Allee Effects. Journal of Theoretical Biology, 2002, 215, 39-46.	1.7	73
49	Extinctions in simple and complex communities. Oikos, 2002, 99, 511-517.	2.7	14
50	Please don't mow the Japanese knotweed!. NeoBiota, 0, 60, 19-23.	1.0	6