Malcolm F White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7920150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Life Sciences New Talent collection. Royal Society Open Science, 2022, 9, 211981.	1.1	Ο
2	Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense. Annual Review of Virology, 2022, 9, 451-468.	3.0	37
3	The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence. Nucleic Acids Research, 2021, 49, 2777-2789.	6.5	46
4	Cyclic oligoadenylate signaling and regulation by ring nucleases during type III CRISPR defense. Rna, 2021, 27, 855-867.	1.6	31
5	Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector. Nucleic Acids Research, 2021, 49, 13122-13134.	6.5	38
6	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	13.6	1,427
7	Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence. Nucleic Acids Research, 2020, 48, 6149-6156.	6.5	18
8	Facile and scalable expression and purification of transcription factor IIH (TFIIH) core complex. Protein Expression and Purification, 2020, 174, 105660.	0.6	0
9	Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR–Cas immunity. Nucleic Acids Research, 2020, 48, 4418-4434.	6.5	34
10	Bacteria SAVED from Viruses. Cell, 2020, 182, 5-6.	13.5	5
11	An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature, 2020, 577, 572-575.	13.7	139
12	Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nature Communications, 2020, 11, 500.	5.8	97
13	The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. ELife, 2020, 9, .	2.8	41
14	Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. ELife, 2020, 9, .	2.8	22
15	Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence. Nucleic Acids Research, 2019, 47, 9259-9270.	6.5	55
16	Asymmetric base-pair opening drives helicase unwinding dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22471-22477.	3.3	15
17	Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems. Methods in Enzymology, 2019, 616, 191-218.	0.4	36
18	A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator. Journal of Molecular Biology, 2019, 431, 2894-2899.	2.0	68

#	Article	IF	CITATIONS
19	Prespacer processing and specific integration in a Type I-A CRISPR system. Nucleic Acids Research, 2018, 46, 1007-1020.	6.5	70
20	Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature, 2018, 562, 277-280.	13.7	105
21	Control of cyclic oligoadenylate synthesis in a type III CRISPR system. ELife, 2018, 7, .	2.8	131
22	DNA repair in the archaea—an emerging picture. FEMS Microbiology Reviews, 2018, 42, 514-526.	3.9	49
23	A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction. Nucleic Acids Research, 2017, 45, gkw1274.	6.5	67
24	High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein. Extremophiles, 2017, 21, 369-379.	0.9	14
25	DNA-Interacting Characteristics of the Archaeal Rudiviral Protein SIRV2_Gp1. Viruses, 2017, 9, 190.	1.5	10
26	Cpf1 shape-shifts for streamlined CRISPR cleavage. Nature Structural and Molecular Biology, 2016, 23, 365-366.	3.6	3
27	Taking a molecular motor for a spin: helicase mechanism studied by spin labeling and PELDOR. Nucleic Acids Research, 2016, 44, 954-968.	6.5	13
28	Multiple nucleic acid cleavage modes in divergent type III CRISPR systems. Nucleic Acids Research, 2016, 44, 1789-1799.	6.5	53
29	Mechanism of DNA loading by the DNA repair helicase XPD. Nucleic Acids Research, 2016, 44, 2806-2815.	6.5	37
30	Functional Characterization of a Conserved Archaeal Viral Operon Revealing Single-Stranded DNA Binding, Annealing and Nuclease Activities. Journal of Molecular Biology, 2015, 427, 2179-2191.	2.0	32
31	Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiology Reviews, 2015, 39, 428-441.	3.9	223
32	The structural basis of DNA binding by the single-stranded DNA-binding protein from <i>Sulfolobus solfataricus</i> . Biochemical Journal, 2015, 465, 337-346.	1.7	29
33	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	13.6	2,081
34	Expression and Purification of the CMR (Type III-B) Complex in Sulfolobus solfataricus. Methods in Molecular Biology, 2015, 1311, 185-194.	0.4	4
35	Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach. Nucleic Acids Research, 2015, 43, 10907-10924.	6.5	25
36	Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. ELife, 2015, 4, .	2.8	104

#	Article	IF	CITATIONS
37	Crystal â€~Unengineering': Reducing the Crystallisability of Sulfolobus solfataricus Hjc. Australian Journal of Chemistry, 2014, 67, 1818.	0.5	2
38	CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Research, 2014, 42, 5280-5288.	6.5	93
39	Single-molecule characterization of Fen1 and Fen1/PCNA complexes acting on flap substrates. Nucleic Acids Research, 2014, 42, 1857-1872.	6.5	40
40	Backbone and side-chain 1H, 13C and 15N resonance assignments of the OB domain of the single stranded DNA binding protein from Sulfolobus solfataricus and chemical shift mapping of the DNA-binding interface. Biomolecular NMR Assignments, 2014, 8, 243-246.	0.4	9
41	Protein-Protein Interactions Leading to Recruitment of the Host DNA Sliding Clamp by the Hyperthermophilic Sulfolobus islandicus Rod-Shaped Virus 2. Journal of Virology, 2014, 88, 7105-7108.	1.5	16
42	Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system. Nucleic Acids Research, 2014, 42, 6532-6541.	6.5	50
43	crRNA Biogenesis. , 2013, , 115-144.		5
44	Structure of the CRISPR Interference Complex CSM Reveals Key Similarities with Cascade. Molecular Cell, 2013, 52, 124-134.	4.5	181
45	Hot and crispy: CRISPR–Cas systems in the hyperthermophile <i>Sulfolobus solfataricus</i> . Biochemical Society Transactions, 2013, 41, 1422-1426.	1.6	28
46	CRISPR interference: a structural perspective. Biochemical Journal, 2013, 453, 155-166.	1.7	113
47	Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochemical Journal, 2013, 452, 223-230.	1.7	32
48	Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Research, 2013, 41, 196-205.	6.5	39
49	Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR. Nucleic Acids Research, 2013, 41, e11-e11.	6.5	29
50	Structure of the archaeal Cascade subunit Csa5. RNA Biology, 2013, 10, 762-769.	1.5	24
51	crRNA Biogenesis. , 2013, , 115-144.		5
52	Displacement of the canonical single-stranded DNA-binding protein in the Thermoproteales. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E398-405.	3.3	34
53	Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA. Nature Communications, 2012, 3, 1328.	5.8	76
54	<i>Staphylococcus aureus</i> DinG, a helicase that has evolved into a nuclease. Biochemical Journal, 2012, 442, 77-84.	1.7	20

#	Article	IF	CITATIONS
55	Postcards from the Edge. Advances in Virus Research, 2012, 82, 33-62.	0.9	40
56	The CRISPR Associated Protein Cas4 Is a 5′ to 3′ DNA Exonuclease with an Iron-Sulfur Cluster. PLoS ONE, 2012, 7, e47232.	1.1	101
57	Structure and Mechanism of the CMR Complex for CRISPR-Mediated Antiviral Immunity. Molecular Cell, 2012, 45, 303-313.	4.5	279
58	Iron–sulphur clusters in nucleic acid processing enzymes. Current Opinion in Structural Biology, 2012, 22, 94-100.	2.6	126
59	The evolution and mechanisms of nucleotide excision repair proteins. Research in Microbiology, 2011, 162, 19-26.	1.0	73
60	Structural and Functional Characterization of an Archaeal Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Complex for Antiviral Defense (CASCADE). Journal of Biological Chemistry, 2011, 286, 21643-21656.	1.6	183
61	Recognition of Archaeal CRISPR RNA: No P in the alindromic Repeat?. Structure, 2011, 19, 142-144.	1.6	7
62	Homologous recombination in the archaea: the means justify the ends. Biochemical Society Transactions, 2011, 39, 15-19.	1.6	60
63	hSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex. Nucleic Acids Research, 2011, 39, 1692-1702.	6.5	70
64	A Dimeric Rep Protein Initiates Replication of a Linear Archaeal Virus Genome: Implications for the Rep Mechanism and Viral Replication. Journal of Virology, 2011, 85, 925-931.	1.5	36
65	hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity. Nucleic Acids Research, 2011, 39, 3643-3651.	6.5	70
66	Dimer–dimer stacking interactions are important for nucleic acid binding by the archaeal chromatin protein Alba. Biochemical Journal, 2010, 427, 49-55.	1.7	26
67	Archaeal Chromatin Organization. , 2010, , 205-217.		10
68	The Scottish Structural Proteomics Facility: targets, methods and outputs. Journal of Structural and Functional Genomics, 2010, 11, 167-180.	1.2	107
69	Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes. Archaea, 2010, 2010, 1-6.	2.3	86
70	PCNA and XPF cooperate to distort DNA substrates. Nucleic Acids Research, 2010, 38, 1664-1675.	6.5	23
71	The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway. Nucleic Acids Research, 2010, 38, 931-941.	6.5	58
72	The XBP-Bax1 Helicase-Nuclease Complex Unwinds and Cleaves DNA. Journal of Biological Chemistry, 2010, 285, 11013-11022.	1.6	31

#	Article	IF	CITATIONS
73	Reactions to UV damage in the model archaeon <i>Sulfolobus solfataricus</i> . Biochemical Society Transactions, 2009, 37, 36-41.	1.6	36
74	Structure, function and evolution of the XPD family of iron–sulfur-containing 5′→3′ DNA helicases. Biochemical Society Transactions, 2009, 37, 547-551.	1.6	96
75	The crenarchaeal DNA damageâ€inducible transcription factor B paralogue TFB3 is a general activator of transcription. Molecular Microbiology, 2009, 72, 1487-1499.	1.2	27
76	AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Nature Chemical Biology, 2009, 5, 174-182.	3.9	67
77	Structural and Functional Characterisation of a Conserved Archaeal RadA Paralog with Antirecombinase Activity. Journal of Molecular Biology, 2009, 389, 661-673.	2.0	45
78	RecA family proteins in archaea: RadA and its cousins. Biochemical Society Transactions, 2009, 37, 102-107.	1.6	58
79	DNA Damage: from Causes to Cures. Biochemical Society Transactions, 2009, 37, 479-481.	1.6	1
80	The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius. BMC Molecular Biology, 2008, 9, 25.	3.0	62
81	Purification, crystallization and data collection of <i>Pectobacterium chrysanthemi</i> AcsD, a type A siderophore synthetase. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1052-1055.	0.7	4
82	Unusual Chromophore and Cross‣inks in Ranasmurfin: A Blue Protein from the Foam Nests of a Tropical Frog. Angewandte Chemie - International Edition, 2008, 47, 7853-7856.	7.2	20
83	Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature, 2008, 453, 677-681.	13.7	220
84	The Major Architects of Chromatin: Architectural Proteins in Bacteria, Archaea and Eukaryotes. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43, 393-418.	2.3	194
85	The Archaeal XPB Protein is a ssDNA-Dependent ATPase with a Novel Partner. Journal of Molecular Biology, 2008, 376, 634-644.	2.0	31
86	Structure of the DNA Repair Helicase XPD. Cell, 2008, 133, 801-812.	13.5	490
87	TarO: a target optimisation system for structural biology. Nucleic Acids Research, 2008, 36, W190-W196.	6.5	79
88	Structure of the DNA Repair Helicase Hel308 Reveals DNA Binding and Autoinhibitory Domains. Journal of Biological Chemistry, 2008, 283, 5118-5126.	1.6	81
89	PCNA stimulates catalysis by structure-specific nucleases using two distinct mechanisms: substrate targeting and catalytic step. Nucleic Acids Research, 2008, 36, 6720-6727.	6.5	25
90	CC1, a Novel Crenarchaeal DNA Binding Protein. Journal of Bacteriology, 2007, 189, 403-409.	1.0	36

#	Article	IF	CITATIONS
91	The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein. Nucleic Acids Research, 2007, 35, 6788-6797.	6.5	22
92	Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biology, 2007, 8, R220.	13.9	118
93	Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistantStaphylococcus aureusSar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5â€2-phosphate-dependent aminotransferase. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 452-456.	0.7	5
94	Purification, crystallization and data collection of methicillin-resistantStaphylococcus aureusSar2676, a pantothenate synthetase. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 488-491.	0.7	4
95	Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands inSulfolobus solfataricus. Molecular Microbiology, 2007, 63, 521-529.	1.2	30
96	An acetylase with relaxed specificity catalyses protein N-terminal acetylation inSulfolobus solfataricus. Molecular Microbiology, 2007, 64, 1540-1548.	1.2	36
97	PCNA Activates the Holliday Junction Endonuclease Hjc. Journal of Molecular Biology, 2006, 364, 243-247.	2.0	15
98	The DNA Repair Helicases XPD and FancJ Have Essential Iron-Sulfur Domains. Molecular Cell, 2006, 23, 801-808.	4.5	298
99	Overexpression, purification, crystallization and data collection ofSulfolobus solfataricusSso6206, aÂnovel highly conserved protein. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 228-230.	0.7	0
100	Structure of the heterotrimeric PCNA fromSulfolobus solfataricus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 944-948.	0.7	61
101	Crystallization of Ranasmurfin, a blue-coloured protein fromPolypedates leucomystax. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1124-1126.	0.7	7
102	Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition. EMBO Journal, 2005, 24, 895-905.	3.5	105
103	Obligate Heterodimerization of the Archaeal Alba2 Protein with Alba1 Provides a Mechanism for Control of DNA Packaging. Structure, 2005, 13, 963-971.	1.6	70
104	Conformational flexibility revealed by the crystal structure of a crenarchaeal RadA. Nucleic Acids Research, 2005, 33, 1465-1473.	6.5	32
105	An Archaeal Endonuclease Displays Key Properties of Both Eukaryal XPF-ERCC1 and Mus81. Journal of Biological Chemistry, 2005, 280, 5924-5928.	1.6	42
106	DNA end-directed and processive nuclease activities of the archaeal XPF enzyme. Nucleic Acids Research, 2005, 33, 6662-6670.	6.5	19
107	The Endonuclease Hje Catalyses Rapid, Multiple Turnover Resolution of Holliday junctions. Journal of Molecular Biology, 2005, 350, 1-6.	2.0	25
108	DNA Damage Detection by an Archaeal Single-stranded DNA-binding Protein. Journal of Molecular Biology, 2005, 353, 507-516.	2.0	56

#	Article	IF	CITATIONS
109	Archaeal DNA replication and repair. Current Opinion in Microbiology, 2005, 8, 669-676.	2.3	134
110	Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Nucleic Acids Research, 2004, 32, 5442-5451.	6.5	41
111	Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Research, 2004, 32, 1065-1074.	6.5	48
112	Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO Journal, 2003, 22, 2561-2570.	3.5	122
113	An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Molecular Microbiology, 2003, 48, 361-371.	1.2	78
114	Crystallization and preliminary X-ray diffraction studies of Hje, a Holliday junction resolving enzyme fromSulfolobus solfataricus. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 171-173.	2.5	7
115	Transcriptional response to DNA damage in the archaeon Sulfolobus solfataricus. Nucleic Acids Research, 2003, 31, 6127-6138.	6.5	33
116	Archaeal DNA repair: paradigms and puzzles. Biochemical Society Transactions, 2003, 31, 690-3.	1.6	33
117	Recruitment of intron-encoded and co-opted proteins in splicing of the bI3 group I intron RNA. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 128-133.	3.3	46
118	Holliday Junction Resolution Is Modulated by Archaeal Chromatin Components in Vitro. Journal of Biological Chemistry, 2002, 277, 2992-2996.	1.6	20
119	Mechanistic implications for Escherichia coli cofactor-dependent phosphoglycerate mutase based on the high-resolution crystal structure of a vanadate complex. Journal of Molecular Biology, 2002, 316, 1071-1081.	2.0	56
120	The Interaction of Alba, a Conserved Archaeal Chromatin Protein, with Sir2 and Its Regulation by Acetylation. Science, 2002, 296, 148-151.	6.0	271
121	Holding it together: chromatin in the Archaea. Trends in Genetics, 2002, 18, 621-626.	2.9	124
122	Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO Journal, 2002, 21, 4654-4662.	3.5	146
123	Distortion of DNA junctions imposed by the binding of resolving enzymes: a fluorescence study. Journal of Molecular Biology, 2001, 313, 751-764.	2.0	36
124	Multiple Holliday junction resolving enzyme activities in the Crenarchaeota and Euryarchaeota. FEBS Letters, 2001, 491, 243-246.	1.3	12
125	Overexpression, purification, crystallization and data collection of a single-stranded DNA-binding protein fromSulfolobus solfataricus. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1290-1292.	2.5	4
126	Preliminary crystallographic studies of the double-stranded DNA-binding protein Sso10b fromSulfolobus solfataricus. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1893-1894.	2.5	4

#	Article	IF	CITATIONS
127	High Resolution Structure of the Phosphohistidine-activated Form of Escherichia coli Cofactor-dependent Phosphoglycerate Mutase. Journal of Biological Chemistry, 2001, 276, 3247-3253.	1.6	63
128	Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Research, 2001, 29, 914-920.	6.5	122
129	Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5509-5514.	3.3	85
130	A Novel Member of the Bacterial-Archaeal Regulator Family Is a Nonspecific DNA-binding Protein and Induces Positive Supercoiling. Journal of Biological Chemistry, 2001, 276, 10745-10752.	1.6	27
131	The junction-resolving enzymes. Nature Reviews Molecular Cell Biology, 2001, 2, 433-443.	16.1	59
132	Resolving the relationships of resolving enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9351-9353.	3.3	70
133	A Conserved Nuclease Domain in the Archaeal Holliday Junction Resolving Enzyme Hjc. Journal of Biological Chemistry, 2000, 275, 25540-25546.	1.6	50
134	Site-directed Mutagenesis of the Yeast Resolving Enzyme Cce1 Reveals Catalytic Residues and Relationship with the Intron-splicing Factor Mrs1. Journal of Biological Chemistry, 2000, 275, 23725-23728.	1.6	16
135	An archaeal holliday junction resolving enzyme from Sulfolobus solfataricus exhibits unique properties. Journal of Molecular Biology, 2000, 295, 193-202.	2.0	51
136	Two holliday junction resolving enzymes in Sulfolobus solfataricus 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 297, 923-932.	2.0	64
137	Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature, 1999, 400, 784-787.	13.7	306
138	The two analogous phosphoglycerate mutases ofEscherichia coli. FEBS Letters, 1999, 455, 344-348.	1.3	90
139	Sequence and Functional-Group Specificity for Cleavage of DNA Junctions by RuvC ofEscherichia coli. Biochemistry, 1999, 38, 11349-11358.	1.2	36
140	Quantitation of Metal Ion and DNA Junction Binding to the Holliday Junction Endonuclease Cce1â€. Biochemistry, 1999, 38, 16613-16619.	1.2	20
141	Dissection of the Sequence Specificity of the Holliday Junction Endonuclease CCE1â€. Biochemistry, 1998, 37, 7733-7740.	1.2	50
142	Interaction of the resolving enzyme YDC2 with the four-way DNA junction. Nucleic Acids Research, 1998, 26, 5609-5616.	6.5	32
143	Characterization of a Holliday Junction-Resolving Enzyme from <i>Schizosaccharomyces pombe</i> . Molecular and Cellular Biology, 1997, 17, 6465-6471.	1.1	67
144	111 A Holliday junction endonuclease from fission yeast. Biochemical Society Transactions, 1997, 25, S645-S645.	1.6	0

#	Article	IF	CITATIONS
145	112 Sequence specificity of CCE1. Biochemical Society Transactions, 1997, 25, S646-S646.	1.6	2
146	The resolving enzyme CCE1 of yeast opens the structure of the four-way DNA junction 1 1 Edited by M. Yaniv. Journal of Molecular Biology, 1997, 266, 122-134.	2.0	88
147	Recognition and manipulation of branched DNA structure by junction-resolving enzymes 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1997, 269, 647-664.	2.0	101
148	The Structure-selectivity and Sequence-preference of the Junction-resolving Enzyme CCE1 ofSaccharomyces cerevisiae. Journal of Molecular Biology, 1996, 257, 330-341.	2.0	97
149	Crystallization and Preliminary X-ray Analysis of Recombinant 1-Aminocyclopropane-1-carboxylate Synthase from Apple. Journal of Molecular Biology, 1994, 243, 947-949.	2.0	11
150	Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12428-12432.	3.3	82
151	Development of a mutagenesis, expression and purification system for yeast phosphoglycerate mutase. Investigation of the role of active-site His181. FEBS Journal, 1992, 207, 709-714.	0.2	54
152	Mutase versus synthase: the phosphoglycerate mutase family studied by protein engineering. Biochemical Society Transactions, 1990, 18, 257-257.	1.6	7
153	Sequence of the gene encoding phosphoglycerate mutase fromSaccharomyces cerevisiae. FEBS Letters, 1988, 229, 383-387.	1.3	41
154	DNA Repair. , 0, , 171-183.		1
155	Recombination Machinery: Holliday Junction-Resolving Enzymes. , 0, , 405-412.		0