
George J Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7919759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer Composites, 1984, 5, 327-333.	4.6	591
2	Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. International Journal of Engineering Science, 1984, 22, 845-856.	5.0	588
3	A Theory of Particle-Reinforced Plasticity. Journal of Applied Mechanics, Transactions ASME, 1988, 55, 126-135.	2.2	384
4	The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds. International Journal of Engineering Science, 1990, 28, 1111-1120.	5.0	331
5	On the application of Mori-Tanaka's theory involving transversely isotropic spheroidal inclusions. International Journal of Engineering Science, 1990, 28, 1121-1137.	5.0	247
6	Average stress in the matrix and effective moduli of randomly oriented composites. Composites Science and Technology, 1986, 27, 111-132.	7.8	239
7	Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. Journal of Applied Physics, 2012, 111, .	2.5	230
8	On strain hardening mechanism in gradient nanostructures. International Journal of Plasticity, 2017, 88, 89-107.	8.8	205
9	Elastic moduli for a class of porous materials. Acta Mechanica, 1989, 76, 105-131.	2.1	204
10	The overall elastoplastic stress-strain relations of dual-phase metals. Journal of the Mechanics and Physics of Solids, 1990, 38, 419-441.	4.8	204
11	A theory of plasticity for carbon nanotube reinforced composites. International Journal of Plasticity, 2011, 27, 539-559.	8.8	179
12	A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites. Journal of Applied Mechanics, Transactions ASME, 1992, 59, 261-268.	2.2	167
13	Antiplane Crack Problem in Functionally Graded Piezoelectric Materials. Journal of Applied Mechanics, Transactions ASME, 2002, 69, 481-488.	2.2	156
14	A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon, 2017, 111, 221-230.	10.3	137
15	The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Composites. Journal of Applied Mechanics, Transactions ASME, 1992, 59, 510-518.	2.2	136
16	A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. Journal of Applied Physics, 2014, 115, .	2.5	133
17	A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. Journal of the Mechanics and Physics of Solids, 2004, 52, 1125-1149.	4.8	132
18	Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. Journal of Applied Physics, 2015, 118, .	2.5	131

#	Article	IF	CITATIONS
19	A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon, 2016, 96, 474-490.	10.3	131
20	The connections between the double-inclusion model and the Ponte Castaneda–Willis, Mori–Tanaka, and Kuster–Toksoz models. Mechanics of Materials, 2000, 32, 495-503.	3.2	116
21	Stress Distribution in and Around Spheroidal Inclusions and Voids at Finite Concentration. Journal of Applied Mechanics, Transactions ASME, 1986, 53, 511-518.	2.2	114
22	On Eshelby's inclusion problem in a three-phase spherically concentric solid, and a modification of Mori-Tanaka's method. Mechanics of Materials, 1987, 6, 347-361.	3.2	112
23	Explicit evaluation of Willis' bounds with ellipsoidal inclusions. International Journal of Engineering Science, 1992, 30, 83-92.	5.0	111
24	A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mechanics of Materials, 2012, 46, 129-138.	3.2	110
25	Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon, 2018, 137, 222-233.	10.3	110
26	Strain gradient polarization in graphene. Carbon, 2017, 117, 462-472.	10.3	109
27	Elastic Moduli of Thickly Coated Particle and Fiber-Reinforced Composites. Journal of Applied Mechanics, Transactions ASME, 1991, 58, 388-398.	2.2	108
28	Effective Elastic Moduli of Ribbon-Reinforced Composites. Journal of Applied Mechanics, Transactions ASME, 1990, 57, 158-167.	2.2	107
29	Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of Materials, 2017, 109, 42-50.	3.2	105
30	Martensitic transformation and stress-strain relations of shape-memory alloys. Journal of the Mechanics and Physics of Solids, 1997, 45, 1905-1928.	4.8	103
31	Transversely isotropic moduli of two partially debonded composites. International Journal of Solids and Structures, 1997, 34, 493-507.	2.7	98
32	A theory of compressive yield strength of nano-grained ceramics. International Journal of Plasticity, 2004, 20, 2007-2026.	8.8	96
33	A Progressive Damage Mechanics in Particle-Reinforced Metal-Matrix Composites Under High Triaxial Tension. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994, 116, 414-420.	1.4	95
34	Plasticity of a two-phase composite with partially debonded inclusions. International Journal of Plasticity, 1996, 12, 781-804.	8.8	94
35	On eshelby's in a three-phase cylindrically concentric solid, and the elastic moduli of fiber-reinforced composites. Mechanics of Materials, 1989, 8, 77-88.	3.2	93
36	A self-consistent model for the stress–strain behavior of shape-memory alloy polycrystals. Acta Materialia, 1998, 46, 5423-5433.	7.9	92

George J Weng

#	Article	IF	CITATIONS
37	A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates. Mechanics of Materials, 2010, 42, 886-893.	3.2	92
38	Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mechanics of Materials, 2013, 58, 1-11.	3.2	90
39	Influence of polarization orientation on the effective properties of piezoelectric composites. Journal of Applied Physics, 2000, 88, 416-423.	2.5	88
40	Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding. International Journal of Plasticity, 2009, 25, 2410-2434.	8.8	86
41	A micromechanical theory of grain-size dependence in metal plasticity. Journal of the Mechanics and Physics of Solids, 1983, 31, 193-203.	4.8	82
42	A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. Acta Materialia, 2015, 87, 293-308.	7.9	79
43	A theory of domain switch for the nonlinear behaviour of ferroelectrics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 3493-3511.	2.1	73
44	Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. Journal of Applied Physics, 2011, 110, .	2.5	71
45	The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite. International Journal of Solids and Structures, 1991, 27, 1537-1550.	2.7	70
46	A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials. International Journal of Plasticity, 2007, 23, 2115-2133.	8.8	69
47	Some reflections on the Mori-Tanaka and Ponte Casta�eda-Willis methods with randomly oriented ellipsoidal inclusions. Acta Mechanica, 2000, 140, 31-40.	2.1	68
48	Strain-Rate Sensitivity, Relaxation Behavior, and Complex Moduli of a Class of Isotropic Viscoelastic Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994, 116, 495-504.	1.4	66
49	Yoffe–type moving crack in a functionally graded piezoelectric material. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 381-399.	2.1	66
50	An Analytical Study of an Experimentally Verified Hardening Law. Journal of Applied Mechanics, Transactions ASME, 1975, 42, 375-378.	2.2	64
51	Self-Consistent Determination of Time-Dependent Behavior of Metals. Journal of Applied Mechanics, Transactions ASME, 1981, 48, 41-46.	2.2	64
52	An energy criterion for the stress-induced martensitic transformation in a ductile system. Journal of the Mechanics and Physics of Solids, 1994, 42, 1699-1724.	4.8	64
53	A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. Journal of Applied Physics, 2016, 120, .	2.5	64
54	A Unified, Self-Consistent Theory for the Plastic-Creep Deformation of Metals. Journal of Applied Mechanics, Transactions ASME, 1982, 49, 728-734.	2.2	60

#	Article	IF	CITATIONS
55	Dynamic behavior of a cylindrical crack in a functionally graded interlayer under torsional loading. International Journal of Solids and Structures, 2001, 38, 7473-7485.	2.7	60
56	Calculating the Electrical Conductivity of Graphene Nanoplatelet Polymer Composites by a Monte Carlo Method. Nanomaterials, 2020, 10, 1129.	4.1	57
57	Plastic potential and yield function of porous materials with aligned and randomly oriented spheroidal voids. International Journal of Plasticity, 1993, 9, 271-290.	8.8	55
58	Influence of microstructural features on the effective magnetostriction of composite materials. Physical Review B, 1999, 60, 6723-6730.	3.2	55
59	Influence of thermal residual stresses on the composite macroscopic behavior. Mechanics of Materials, 1998, 27, 229-240.	3.2	52
60	Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites. Journal of Physics Condensed Matter, 2017, 29, 205702.	1.8	52
61	A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon, 2019, 146, 125-138.	10.3	51
62	A secant-viscosity approach to the time-dependent creep of an elastic viscoplastic composite. Journal of the Mechanics and Physics of Solids, 1997, 45, 1069-1083.	4.8	50
63	Effect of carbon nanotube geometry upon tunneling assisted electrical network in nanocomposites. Journal of Applied Physics, 2013, 113, .	2.5	49
64	Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites. , 2018, , 123-156.		47
65	Dynamic stress intensity factor of a cylindrical interface crack with a functionally graded interlayer. Mechanics of Materials, 2001, 33, 325-333.	3.2	46
66	A phase-field study on the hysteresis behaviors and domain patterns of nanocrystalline ferroelectric polycrystals. Journal of Applied Physics, 2013, 113, .	2.5	46
67	Micromechanical simulation of fracture behavior of bimodal nanostructured metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 479-489.	5.6	45
68	Kinematic hardening rule in single crystals. International Journal of Solids and Structures, 1979, 15, 861-870.	2.7	44
69	The Effect of Debonding Angle on the Reduction of Effective Moduli of Particle and Fiber-Reinforced Composites. Journal of Applied Mechanics, Transactions ASME, 2002, 69, 292-302.	2.2	44
70	Effect of Kapitza contact and consideration of tube-end transport on the effective conductivity in nanotube-based composites. Journal of Applied Physics, 2005, 97, 104312.	2.5	44
71	The competition of grain size and porosity in the viscoplastic response of nanocrystalline solids. International Journal of Plasticity, 2008, 24, 1380-1410.	8.8	44
72	Effect of a viscoelastic interphase on the creep and stress/strain behavior of fiber-reinforced polymer matrix composites. Composites Part B: Engineering, 1996, 27, 589-598.	12.0	43

#	Article	IF	CITATIONS
73	Anisotropic hardening in single crystals and the plasticity of polycrystals. International Journal of Plasticity, 1987, 3, 315-339.	8.8	41
74	A theory of ferroelectric hysteresis with a superimposed stress. Journal of Applied Physics, 2002, 91, 3806-3815.	2.5	41
75	The shift of Curie temperature and evolution of ferroelectric domain in ferroelectric crystals. Journal of the Mechanics and Physics of Solids, 2005, 53, 2071-2099.	4.8	41
76	An Energy Approach to the Plasticity of a Two-Phase Composite Containing Aligned Inclusions. Journal of Applied Mechanics, Transactions ASME, 1995, 62, 1039-1046.	2.2	40
77	Thermodynamic driving force in ferroelectric crystals with a rank-2 laminated domain pattern, and a study of enhanced electrostriction. Journal of the Mechanics and Physics of Solids, 2009, 57, 571-597.	4.8	40
78	The effects of temperature and alignment state of nanofillers on the thermal conductivity of both metal and nonmetal based graphene nanocomposites. Acta Materialia, 2020, 185, 461-473.	7.9	40
79	A theory of magnetoelectric coupling with interface effects and aspect-ratio dependence in piezoelectric-piezomagnetic composites. Journal of Applied Physics, 2015, 117, 164106.	2.5	39
80	Modeling the dielectric breakdown strength and energy storage density of graphite-polymer composites with dielectric damage process. Materials and Design, 2020, 189, 108531.	7.0	38
81	An X-band theory of electromagnetic interference shielding for graphene-polymer nanocomposites. Journal of Applied Physics, 2017, 122, .	2.5	36
82	A unified theory of plasticity, progressive damage and failure in graphene-metal nanocomposites. International Journal of Plasticity, 2017, 99, 58-80.	8.8	34
83	Dynamic stress intensity factor of a functionally graded material under antiplane shear loading. Acta Mechanica, 2001, 149, 1-10.	2.1	33
84	Dislocation theories of work hardening and yield surfaces of single crystals. Acta Mechanica, 1980, 37, 217-230.	2.1	32
85	A unified approach from elasticity to viscoelasticity to viscoplasticity of particle-reinforced solids. International Journal of Plasticity, 1998, 14, 193-208.	8.8	32
86	A micromechanics-based thermodynamic model for the domain switch in ferroelectric crystals. Acta Materialia, 2004, 52, 2489-2496.	7.9	32
87	Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic. Composite Structures, 2016, 157, 163-173.	5.8	32
88	A two-level micromechanical theory for a shape-memory alloy reinforced composite. International Journal of Plasticity, 2000, 16, 1289-1307.	8.8	31
89	Effects of surface tension on the size-dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films. Journal of Applied Physics, 2011, 110, 084108.	2.5	31
90	A Theory of Inclusion Debonding and its Influence on the Stress-Strain Relations of a Ductile Matrix Composite. International Journal of Damage Mechanics, 1995, 4, 196-211.	4.2	30

#	Article	IF	CITATIONS
91	A direct method for the crystallography of martensitic transformation and its application to TiNi and AuCd. Acta Materialia, 2002, 50, 2967-2987.	7.9	30
92	Piezoelectric composites with periodic multi-coated inhomogeneities. International Journal of Solids and Structures, 2010, 47, 2893-2904.	2.7	30
93	Elastic moduli of heterogeneous solids with ellipsoidal inclusions and elliptic cracks. Acta Mechanica, 1995, 110, 73-94.	2.1	29
94	Interfacial partial debonding and its influence on the elasticity of a two-phase composite. Mechanics of Materials, 2000, 32, 695-709.	3.2	29
95	Tailoring the frequency-dependent electrical conductivity and dielectric permittivity of CNT-polymer nanocomposites with nanosized particles. International Journal of Engineering Science, 2019, 142, 1-19.	5.0	29
96	The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene–polymer nanocomposites. Acta Mechanica, 2020, 231, 1305-1320.	2.1	29
97	Nonlinear Behavior and Critical State of a Penny-Shaped Dielectric Crack in a Piezoelectric Solid. Journal of Applied Mechanics, Transactions ASME, 2007, 74, 852-860.	2.2	28
98	A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites. Carbon, 2021, 175, 259-270.	10.3	28
99	Constitutive equations of single crystals and polycrystalline aggregates under cyclic loading. International Journal of Engineering Science, 1980, 18, 1385-1397.	5.0	27
100	A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 284-290.	5.6	27
101	A Self-Consistent Scheme for the Relaxation Behavior of Metals. Journal of Applied Mechanics, Transactions ASME, 1981, 48, 779-784.	2.2	26
102	A self-consistent relation for the time-dependent creep of polycrystals. International Journal of Plasticity, 1993, 9, 181-198.	8.8	26
103	Mechanics of creep resistance in nanocrystalline solids. Acta Mechanica, 2008, 195, 327-348.	2.1	26
104	Ductility enhancement of layered stainless steel with nanograined interface layers. Computational Materials Science, 2012, 55, 350-355.	3.0	26
105	Intrinsic versus extrinsic effects of the grain boundary on the properties of ferroelectric nanoceramics. Physical Review B, 2017, 95, .	3.2	26
106	The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 301-314.	1.4	25
107	A theory of double hysteresis for ferroelectric crystals. Journal of Applied Physics, 2006, 99, 054103.	2.5	25
108	Elastic constants of a polycrystal with transversely isotropic grains, and the influence of precipitates. Mechanics of Materials, 1991, 12, 1-15.	3.2	24

#	Article	IF	CITATIONS
109	Dynamic Fracture Analysis for a Penny-Shaped Crack in an FGM Interlayer between Dissimilar Half Spaces. Mathematics and Mechanics of Solids, 2002, 7, 149-163.	2.4	24
110	Magnetoelectric coupling and overall properties of multiferroic composites with 0-0 and 1-1 connectivity. Journal of Applied Physics, 2015, 118, .	2.5	24
111	Molecular dynamics and atomistic based continuum studies of the interfacial behavior of nanoreinforced epoxy. Mechanics of Materials, 2015, 85, 38-46.	3.2	24
112	An investigation of yield surfaces based on dislocation mechanics—I. International Journal of Engineering Science, 1977, 15, 45-59.	5.0	23
113	Computer simulation of strength and ductility of nanotwin-strengthened coarse-grained metals. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 075014.	2.0	23
114	Uncovering the glass-transition temperature and temperature-dependent storage modulus of graphene-polymer nanocomposites through irreversible thermodynamic processes. International Journal of Engineering Science, 2021, 158, 103411.	5.0	23
115	A hierarchical scheme from nano to macro scale for the strength and ductility of graphene/metal nanocomposites. International Journal of Engineering Science, 2021, 162, 103476.	5.0	23
116	Theoretical approach to effective electrostriction in inhomogeneous materials. Physical Review B, 2000, 61, 258-265.	3.2	22
117	A new constitutive equation for the long-term creep of polymers based on physical aging. European Journal of Mechanics, A/Solids, 2002, 21, 411-421.	3.7	22
118	Effective bulk moduli of two functionally graded composites. Acta Mechanica, 2003, 166, 57-67.	2.1	22
119	The Nature of Stress and Electric-displacement Concentrations around a Strongly Oblate Cavity in a Transversely Isotropic Piezoelectric Material. International Journal of Fracture, 2005, 134, 319-337.	2.2	22
120	A self-consistent polycrystal model for the spontaneous polarization of ferroelectric ceramics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 1763-1789.	2.1	22
121	Numerical simulation of ballistic performance of bimodal nanostructured metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 630, 13-26.	5.6	22
122	Title is missing!. Journal of Elasticity, 1998, 53, 1-22.	1.9	21
123	A polycrystal hysteresis model for ferroelectric ceramics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 1573-1592.	2.1	21
124	Simulation of ballistic performance of coarse-grained metals strengthened by nanotwinned regions. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 085009.	2.0	21
125	The direct and indirect effects of nanotwin volume fraction on the strength and ductility of coarse-grained metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 234-243.	5.6	20
126	Theoretical study on self-biased magnetoelectric effect of layered magnetoelectric composites. Mechanics of Materials, 2020, 151, 103609.	3.2	20

George J Weng

#	Article	IF	CITATIONS
127	A micromechanical model for heterogeneous nanograined metals with shape effect of inclusions and geometrically necessary dislocation pileups at the domain boundary. International Journal of Plasticity, 2021, 144, 103024.	8.8	20
128	Creep Deformation of Particle-Strengthened Metal-Matrix Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 1989, 111, 99-105.	1.4	19
129	Micromechanics simulation of spontaneous polarization in ferroelectric crystals. Journal of Applied Physics, 2001, 90, 2484-2491.	2.5	19
130	Changes in the board of editors. Acta Mechanica, 2018, 229, 1-1.	2.1	19
131	Segregated carbon nanotube networks in CNT-polymer nanocomposites for higher electrical conductivity and dielectric permittivity, and lower percolation threshold. International Journal of Engineering Science, 2022, 173, 103650.	5.0	19
132	Theoretical Calculation of Anisotropie Creep and Stress-Strain Behavior for a Class Of Metal-Matrix Composites. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 2049-2059.	1.4	18
133	The saturation state of strength and ductility of bimodal nanostructured metals. Materials Letters, 2016, 175, 131-134.	2.6	18
134	Creep anisotropy of a metal-matrix composite containing dilute concentration of aligned spheroidal inclusions. Mechanics of Materials, 1990, 9, 93-105.	3.2	17
135	Anisotropic stress-strain relations and complex moduli of a viscoelastic composite with aligned spheroidal inclusions. Composites Part B: Engineering, 1994, 4, 1073-1097.	0.6	17
136	A micromechanical approach to the stress–strain relations, strain-rate sensitivity and activation volume of nanocrystalline materials. International Journal of Mechanics and Materials in Design, 2013, 9, 141-152.	3.0	17
137	Elastic moduli of randomly oriented, chopped-fibre composites with filled resin. Journal of Materials Science, 1979, 14, 2183-2190.	3.7	16
138	Determination of notch-tip plasticity by X-ray diffraction and comparison to continuum mechanics analysis. Journal of Applied Crystallography, 1982, 15, 594-601.	4.5	16
139	Transient Creep Strain of a Fiber-Reinforced Metal-Matrix Composite Under Transverse Loading. Journal of Engineering Materials and Technology, Transactions of the ASME, 1992, 114, 237-244.	1.4	16
140	Modulus prediction of a cross-ply fiber reinforced fabric composite with voids. Polymer Composites, 1992, 13, 285-294.	4.6	16
141	An experimental and theoretical study of creep of a graphite/epoxy woven composite. Polymer Composites, 1996, 17, 353-361.	4.6	16
142	Mechanics of a nanocrystalline coating and grain-size dependence of its plastic strength. Mechanics of Materials, 2011, 43, 496-504.	3.2	16
143	A Physically Consistent Method for the Prediction of Creep Behavior of Metals. Journal of Applied Mechanics, Transactions ASME, 1979, 46, 800-804.	2.2	15
144	Effective creep behavior and complex moduli of fiber- and ribbon-reinforced polymer-matrix composites. Composites Science and Technology, 1994, 52, 615-629.	7.8	15

#	Article	IF	CITATIONS
145	A theory of frequency dependence and sustained high dielectric constant in functionalized graphene-polymer nanocomposites. Mechanics of Materials, 2020, 144, 103352.	3.2	15
146	An investigation of yield surfaces based on dislocation mechanics—II. International Journal of Engineering Science, 1977, 15, 61-70.	5.0	14
147	Micromechanics of time-dependent deformation in a dispersion-hardened polycrystal. Acta Mechanica, 1987, 69, 295-313.	2.1	14
148	A homogenization theory for the overall creep of isotropic viscoplastic composites. Acta Mechanica, 1997, 125, 141-153.	2.1	14
149	Overall Elastic and Elastoplastic Behavior of a Partially Debonded Fiber-reinforced Composite. Journal of Composite Materials, 2003, 37, 741-758.	2.4	14
150	Micromechanical determination of two-phase plasticity. International Journal of Plasticity, 1985, 1, 275-287.	8.8	13
151	Time-dependent creep of a dual-phase viscoplastic material with lamellar structure. International Journal of Plasticity, 1998, 14, 755-770.	8.8	13
152	A polycrystal model for the anisotropic behavior of a fully poled ferroelectric ceramic. Journal of Applied Physics, 2006, 100, 114110.	2.5	13
153	Plasticity of Particle-Reinforced Composites With a Ductile Interphase. Journal of Applied Mechanics, Transactions ASME, 1998, 65, 596-604.	2.2	12
154	A dual homogenization and finite-element study on the in-plane local and global behavior of a nonlinear coated fiber composite. Computer Methods in Applied Mechanics and Engineering, 2000, 183, 141-155.	6.6	12
155	Micromechanics study of thermomechanical characteristics of polycrystal shape-memory alloy films. Thin Solid Films, 2000, 376, 198-207.	1.8	12
156	Effect of porosity on the effective magnetostriction of polycrystals. Journal of Applied Physics, 2000, 88, 339-343.	2.5	12
157	A theory of triple hysteresis in ferroelectric crystals. Journal of Applied Physics, 2009, 106, 074109.	2.5	12
158	Predicting temperature-dependent creep and recovery behaviors of agglomerated graphene-polymer nanocomposites with a thermodynamically driven temperature-degraded process. Mechanics of Materials, 2020, 150, 103576.	3.2	12
159	Self-consistent relation in polycrystalline plasticity with a non-uniform matrix. International Journal of Solids and Structures, 1984, 20, 689-698.	2.7	11
160	Stress-Strain Relations of a Viscoelastic Composite Reinforced with Elliptic Cylinders. Journal of Thermoplastic Composite Materials, 1997, 10, 19-30.	4.2	11
161	A micromechanical theory for the thermally induced phase transformation in shape memory alloys. Smart Materials and Structures, 2000, 9, 582-591.	3.5	11
162	Composites with superspherical inhomogeneities. Philosophical Magazine Letters, 2009, 89, 439-451.	1.2	11

#	Article	IF	CITATIONS
163	Study on Strain-Rate Sensitivity of Cementitious Composites. Journal of Engineering Mechanics - ASCE, 2010, 136, 1076-1082.	2.9	11
164	A Micromechanical Theory of High Temperature Creep. Journal of Applied Mechanics, Transactions ASME, 1987, 54, 822-827.	2.2	10
165	Self-similar and transient void growth in viscoelastic media at low concentration. International Journal of Fracture, 1993, 61, 1-16.	2.2	10
166	A simple unified theory for the cyclic deformation of metals at high temperature. Acta Mechanica, 1996, 118, 135-149.	2.1	10
167	Progressive debonding of aligned oblate inclusions and loss of stiffness in a brittle matrix composite. Engineering Fracture Mechanics, 1996, 53, 897-910.	4.3	10
168	Void growth and stress-strain relations of a class of viscoelastic porous materials. Mechanics of Materials, 1996, 22, 179-188.	3.2	10
169	A dual-phase homogenization theory for the hysteresis and butterfly-shaped behavior of ferroelectric single crystals. Mechanics of Materials, 2006, 38, 945-957.	3.2	10
170	Microstructural evolution and overall response of an initially isotropic ferroelectric polycrystal under an applied electric field. Mechanics of Materials, 2009, 41, 1179-1191.	3.2	10
171	Investigation of the Age-Dependent Constitutive Relations of Mortar. Journal of Engineering Mechanics - ASCE, 2012, 138, 297-306.	2.9	10
172	On reflected interactions in elastic solids containing inhomogeneities. Journal of the Mechanics and Physics of Solids, 2014, 68, 197-209.	4.8	10
173	Tunable Electrical Properties of Embossed, Cellulose-Based Paper for Skin-like Sensing. ACS Applied Materials & Interfaces, 2020, 12, 51960-51968.	8.0	10
174	Monte Carlo method with Bézier curves for the complex conductivity of curved CNT-polymer nanocomposites. International Journal of Engineering Science, 2021, 168, 103543.	5.0	10
175	Revealing the AC electromechanically coupled effects and stable sensitivity on the dielectric loss in CNT-based nanocomposite sensors. Materials and Design, 2022, 216, 110557.	7.0	10
176	Finite element analysis of the magnetoelectric effect on hybrid magnetoelectric composites. Composite Structures, 2022, 296, 115876.	5.8	10
177	Determination of strain concentration by microfluorescent densitometry of X-ray topography: A bridge between microfracture and continuum mechanics. Journal of Applied Crystallography, 1980, 13, 290-296.	4.5	9
178	THERMAL STRESS AND VOLUME CHANGE DURING A COOLING PROCESS INVOLVING PHASE TRANSFORMATION. Journal of Thermal Stresses, 1992, 15, 1-23.	2.0	9
179	Determination of transient and steady-state creep of metal-matrix composites by a secant-moduli method. Composites Part B: Engineering, 1993, 3, 661-674.	0.6	9
180	Plasticity of isotropic composites with randomly oriented and packeted inclusions. International Journal of Plasticity, 1994, 10, 553-578.	8.8	9

#	Article	IF	CITATIONS
181	Micromechanics-Based Predictions on the Overall Stress-Strain Relations of Cement-Matrix Composites. Journal of Engineering Mechanics - ASCE, 2008, 134, 1045-1052.	2.9	9
182	A micro-continuum model for the creep behavior of complex nanocrystalline materials. International Journal of Engineering Science, 2011, 49, 155-174.	5.0	9
183	Axial-torsional high-cycle fatigue of both coarse-grained and nanostructured metals: A 3D cohesive finite element model with uncertainty characteristics. Engineering Fracture Mechanics, 2018, 195, 30-43.	4.3	9
184	Experimental Investigation of the Magnetoelectric Effect in NdFeB-Driven A-Line Shape Terfenol-D/PZT-5A Structures. Materials, 2019, 12, 1055.	2.9	9
185	Tailoring tensile ductility of thin film by grain size graded substrates. International Journal of Solids and Structures, 2019, 166, 124-134.	2.7	9
186	Biaxial fatigue crack growth in proton exchange membrane of fuel cells based on cyclic cohesive finite element method. International Journal of Mechanical Sciences, 2021, 189, 105946.	6.7	9
187	Influence of Inclusion Microgeometry on Some Thermomechanical Properties of Isotropic Polymer-Matrix Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 1997, 119, 242-250.	1.4	9
188	Derivation of Polycrystal Creep Properties From the Creep Data of Single Crystals. Journal of Applied Mechanics, Transactions ASME, 1977, 44, 73-78.	2.2	8
189	The stress fields of continuous distribution of dislocations and of their movement in a polycrystalline aggregate. International Journal of Solids and Structures, 1978, 14, 535-544.	2.7	8
190	Transition of Plastic Behavior From Single Crystal to Polycrystal Under Pure Tension, and the Effect of Multislip. Journal of Engineering Materials and Technology, Transactions of the ASME, 1984, 106, 311-316.	1.4	8
191	A local theory for the calculation of overall creep strain of particle-reinforced composites. International Journal of Plasticity, 1990, 6, 449-469.	8.8	8
192	Unified approach for the estimate of effective magnetostriction of composites and polycrystals with particulate and columnar microstructures. Physical Review B, 2003, 68, .	3.2	8
193	Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160468.	2.1	8
194	The frequency dependence of microstructure evolution in a ferroelectric nano-film during AC dynamic polarization switching. Acta Mechanica, 2018, 229, 795-805.	2.1	8
195	Interface effects on the strength and ductility of bimodal nanostructured metals. Acta Mechanica, 2018, 229, 3475-3487.	2.1	8
196	Direct and converse nonlinear magnetoelectric coupling in multiferroic composites with ferromagnetic and ferroelectric phases. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190002.	2.1	8
197	Simulation of ductile fracture of zirconium alloys based on triaxiality dependent cohesive zone model. Acta Mechanica, 2021, 232, 3723-3736.	2.1	8
198	Surface and interface effects on the bending behavior of nonlinear multilayered magnetoelectric nanostructures. Composite Structures, 2021, 275, 114485.	5.8	8

#	Article	IF	CITATIONS
199	Nonlinear magnetoelectric effects of polymer-based hybrid magnetoelectric composites with chain-like terfenol-D/epoxy and PVDF multilayers. Composites Science and Technology, 2021, 216, 109069.	7.8	8
200	Plastic anisotropy of textured steel sheet. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1974, 5, 2451-2455.	1.4	7
201	The yield surface of single crystals at arbitrary strain. Acta Mechanica, 1980, 37, 231-245.	2.1	7
202	Determination of the strain concentration factors around holes and inclusions in crystals by X-ray topography. Journal of Applied Crystallography, 1982, 15, 423-429.	4.5	7
203	The influence of fatigue stress on the creep behaviour of metals. Acta Metallurgica, 1983, 31, 207-212.	2.1	7
204	Exact connections between effective magnetostriction and effective elastic moduli of fibrous composites and polycrystals. Journal of Applied Physics, 2003, 94, 491-495.	2.5	7
205	The influence of a compressive stress on the nonlinear response of ferroelectric crystals. International Journal of Plasticity, 2007, 23, 1860-1873.	8.8	7
206	3D cohesive modeling of nanostructured metallic alloys with a Weibull random field in torsional fatigue. International Journal of Mechanical Sciences, 2015, 101-102, 227-240.	6.7	7
207	Porosity-dependent percolation threshold and frequency-dependent electrical properties for highly aligned graphene-polymer nanocomposite foams. Materials Today Communications, 2020, 22, 100853.	1.9	7
208	Experimental and theoretical study of the evolution of fluid-suspended graphene morphology driven by an applied electric field and the attainment of ultra-low percolation threshold in graphene-polymer nanocomposites. Composites Science and Technology, 2020, 199, 108315.	7.8	7
209	Constitutive relations of metal crystals at arbitrary strain. Acta Mechanica, 1981, 41, 217-232.	2.1	6
210	Cyclic stress relaxation of polycrystalline metals at elevated temperature. International Journal of Solids and Structures, 1983, 19, 541-550.	2.7	6
211	Tensile creep acceleration by superimposed cyclic torsional strain in polycrystalline metals. Materials Science and Engineering, 1983, 57, 127-133.	0.1	6
212	A unified determination of creep and strain rate sensitivity of polycrystals from the properties of constituent grains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 172, 43-49.	5.6	6
213	Theoretical calculation of the stress-strain behavior of dual-phase metals with randomly oriented spheroidal inclusions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 2359-2365.	2.2	6
214	Effective magnetostriction of nanocrystalline magnetic materials: An alternative effective-medium description of interfacial effect. Journal of Magnetism and Magnetic Materials, 2001, 233, 219-223.	2.3	6
215	A PIEZOELECTRIC INHOMOGENEITY INTERACTING WITH A BRANCHED CRACK. International Journal of Computational Methods, 2006, 03, 1-20.	1.3	6
216	On Eshelby's S-tensor under various magneto-electro-elastic constitutive settings, and its application to multiferroic composites. Journal of Micromechanics and Molecular Physics, 2016, 01, 1640002.	1.2	6

#	Article	IF	CITATIONS
217	Stress-assisted grain-rotation-induced dislocation emission from grain boundaries in nanocrystalline face-centered-cubic metals. Philosophical Magazine Letters, 2019, 99, 466-478.	1.2	6
218	Microstructureâ€Property Relations in the Tensile Behavior of Bimodal Nanostructured Metals. Advanced Engineering Materials, 2020, 22, 2000097.	3.5	6
219	Dual percolations of electrical conductivity and electromagnetic interference shielding in progressively agglomerated CNT/polymer nanocomposites. Mathematics and Mechanics of Solids, 2021, 26, 1120-1137.	2.4	6
220	A Micromechanics-Based Hysteresis Model for Ferroelectric Ceramics. Journal of Intelligent Material Systems and Structures, 2001, 12, 79-91.	2.5	6
221	Modeling the impact of glass transition on the frequency-dependent complex conductivity of CNT-polymer nanocomposites. Mechanics of Materials, 2022, 165, 104195.	3.2	6
222	Creep rupture in carbon nanotube-based viscoplastic nanocomposites. International Journal of Plasticity, 2022, 150, 103189.	8.8	6
223	Impact of a finite elastic-viscoplastic bar. International Journal of Non-Linear Mechanics, 1980, 15, 195-209.	2.6	5
224	Thermal stress relief by plastic deformation in aligned two-phase composites. Composites Part B: Engineering, 1993, 3, 219-234.	0.6	5
225	Pressure sensitivity and strength-differential effect of fiber-reinforced polymer matrix composites. Mechanics of Materials, 1994, 17, 329-349.	3.2	5
226	The influence of imperfections on the creep behavior of woven polymer composites at elevated temperatures. Finite Elements in Analysis and Design, 1996, 23, 333-347.	3.2	5
227	The Prager Medal Lecture: micromechanics and some aspects of phase fields in ferroelectric crystals. Acta Mechanica, 2014, 225, 979-998.	2.1	5
228	Tensile Failure Modes in Nanograined Metals with Nanotwinned Regions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5001-5014.	2.2	5
229	The limit velocity and limit displacement of nanotwin-strengthened metals under ballistic impact. Acta Mechanica, 2018, 229, 1741-1757.	2.1	5
230	A synergetic grain growth mechanism uniting nanograin rotation and grain boundary migration in nanocrystalline materials. Results in Physics, 2019, 14, 102381.	4.1	5
231	Tuning the AC electric responses of decorated PDA@MWCNT/PVDF nanocomposites. Composites Science and Technology, 2022, 222, 109398.	7.8	5
232	On the kinematics of continuous distribution of dislocations in plasticity. International Journal of Engineering Science, 1976, 14, 65-73.	5.0	4
233	Transient creep behavior of a metal matrix composite with a dilute concentration of randomly oriented spheroidal inclusions. Composites Science and Technology, 1992, 44, 287-297.	7.8	4
234	Orthotropic Creep and Complex Moduli of a Viscoelastic Composite Reinforced with Aligned Elliptic Fibers. Journal of Composite Materials, 1996, 30, 1042-1066.	2.4	4

#	Article	IF	CITATIONS
235	A relaxed-constraint model for the tensile behavior of polycrystal shape-memory alloy wires. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 305-313.	2.2	4
236	A new look at Hill's arithmetic and geometric means for a two-phase, isotropic composite. Acta Mechanica, 2002, 156, 1-12.	2.1	4
237	A scaling law for distinct electrocaloric cooling performance in low-dimensional organic, relaxor and anti-ferroelectrics. Scientific Reports, 2017, 7, 11111.	3.3	4
238	Influences of nanotwin volume fraction on the ballistic performance of coarse-grained metals. Theoretical and Applied Mechanics Letters, 2017, 7, 265-268.	2.8	4
239	Significantly enhanced crack blunting by nanograin rotation in nanocrystalline materials. Scripta Materialia, 2018, 151, 19-23.	5.2	4
240	The effect of temperature and solute content on the plastic properties of polycrystalline alloys. Materials Science and Engineering, 1984, 62, 57-63.	0.1	3
241	Influence of random bridging on the elastic and elastoplastic properties of fiber-reinforced composites. Acta Mechanica, 1996, 116, 29-44.	2.1	3
242	creep of a composite with dual viscoplastic phases. Composites Science and Technology, 1998, 58, 1803-1810.	7.8	3
243	A micromechanics theory for the transformation toughening of two-phase ceramics. Acta Mechanica, 2002, 156, 47-62.	2.1	3
244	Finite anti-plane shear deformation of nonlinear elastic composites reinforced with elliptic fibers. Mechanics of Materials, 2009, 41, 868-877.	3.2	3
245	Phase Field Approach and Micromechanics in Ferroelectric Crystals. , 2013, , .		3
246	Magnetoelectric Coupling and Overall Properties of a Class of Multiferroic Composites. , 2016, , 189-233.		3
247	Theoretical calculation of creep and relaxation of polycrystals, and stress redistribution among constituent grains. Journal of Materials Science, 1987, 22, 1390-1396.	3.7	2
248	The Influence of a Ductile Interphase on the Overall Elastoplastic Behavior of a Fiber-Reinforced Composite. Journal of Applied Mechanics, Transactions ASME, 1999, 66, 21-31.	2.2	2
249	Effective electrostrictive coefficients of polycrystalline ceramics. Journal of Materials Science Letters, 2000, 19, 291-293.	0.5	2
250	The bounds of electrostrictive coefficients of relaxor-based ferroelectric ceramics. Philosophical Magazine Letters, 2000, 80, 445-451.	1.2	2
251	A composite model for the grain-size dependence of yield stress of nanograined materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 765-772.	2.2	2
252	Anisotropic mechanism on distinct transition modes of tip-activated multipolorizaion switching in epitaxial BiFeO3 films. Journal of Applied Physics, 2011, 109, 024102.	2.5	2

#	Article	IF	CITATIONS
253	Ballistic Performance of Nanostructured Metals Toughened by Elliptical Coarse-Grained Inclusions: A Finite Element Study with Failure Analysis. Materials, 2018, 11, 977.	2.9	2
254	Three dimensional phase-field simulations on the frequency dependence of polarization vectors and hysteresis loops in ferroelectric crystals. Journal of Applied Physics, 2019, 125, 084102.	2.5	2
255	Micromechanical determination of the viscoplastic behavior of a metal-matrix composite. Studies in Applied Mechanics, 1994, , 213-227.	0.4	2
256	Tuning the strength-ductility synergy of nanograined Cu through nanotwin volume fraction. Computational Materials Science, 2022, 203, 111073.	3.0	2
257	Parametric response of a metallic column at elevated temperature. International Journal of Non-Linear Mechanics, 1979, 14, 123-132.	2.6	1
258	Plastic anisotropy of sheets with continuously varying anisotropic parameters and flow stress. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 317-326.	2.2	1
259	Multiaxial constitutive modeling of aircraft engine materials. Finite Elements in Analysis and Design, 1996, 23, 319-332.	3.2	1
260	Effects of Microstructures, Porosity and External Pressure on the Phase Transition of Ferroelectric Ceramics Upon Cooling. International Journal of Mechanics and Materials in Design, 2004, 1, 17-32.	3.0	1
261	Local Monte Carlo Method for Fatigue Analysis of Coarse-Grained Metals with a Nanograined Surface Layer. Metals, 2018, 8, 479.	2.3	1
262	Modeling the strainâ€dependent electrical resistance and strain sensitivity factor of CNTâ€polymer nanocomposites. Mathematical Methods in the Applied Sciences, 0, , .	2.3	1
263	Review and perspective on the calculations of mechanical and functional properties of low-dimensional nanocomposites. Journal of Micromechanics and Molecular Physics, 2021, 06, 67-87.	1.2	1
264	THE INFLUENCE OF PARTICLE CONCENTRATION ON THE HIGH-TEMPERATURE STRESS-STRAIN BEHAVIOR OF METAL-MATRIX COMPOSITES. Journal of the Mechanical Behavior of Materials, 1993, 4, 353-364.	1.8	0
265	Review and perspective in mechanics. Acta Mechanica, 2015, 226, 977-977.	2.1	0
266	Cristian Marchioli to succeed Alfredo Soldati as an Editor of Acta Mechanica. Acta Mechanica, 2017, 228, 1211-1211.	2.1	0
267	Editorial: Review and Perspective on the Soft Matter Modeling of Cellular Mechanobiology. Acta Mechanica, 2017, 228, 4093-4093.	2.1	0
268	Special Issue dedicated to the memory of Franz Ziegler. Acta Mechanica, 2018, 229, 421-421.	2.1	0
269	Phase-field simulations on the frequency-dependent evolution of nano-magnetic domains and hysteresis loops of ferromagnetic Terfenol-D. Materials Today Communications, 2022, 32, 103849.	1.9	0