Charanpreet Kaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7919204/publications.pdf Version: 2024-02-01

CHADANDDEET KALID

#	Article	IF	CITATIONS
1	Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environmental Microbiology, 2022, 24, 2817-2836.	3.8	4
2	Tracing the Evolution of Plant Glyoxalase III Enzymes for Structural and Functional Divergence. Antioxidants, 2021, 10, 648.	5.1	10
3	What signals the glyoxalase pathway in plants?. Physiology and Molecular Biology of Plants, 2021, 27, 2407-2420.	3.1	11
4	Complex Networks of Prion-Like Proteins Reveal Cross Talk Between Stress and Memory Pathways in Plants. Frontiers in Plant Science, 2021, 12, 707286.	3.6	13
5	Serotonin and Melatonin Biosynthesis in Plants: Genome-Wide Identification of the Genes and Their Expression Reveal a Conserved Role in Stress and Development. International Journal of Molecular Sciences, 2021, 22, 11034.	4.1	26
6	Methylglyoxal-glyoxalase system as a possible selection module for raising marker-safe plants in rice. Physiology and Molecular Biology of Plants, 2021, 27, 2579-2588.	3.1	3
7	Expression dynamics of glyoxalase genes under high temperature stress in plants. Plant Physiology Reports, 2020, 25, 533-548.	1.5	4
8	From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor. BMC Genomics, 2020, 21, 145.	2.8	24
9	Reassessing plant glyoxalases: large family and expanding functions. New Phytologist, 2020, 227, 714-721.	7.3	35
10	Draft Genome Sequence of Bacillus marisflavi CK-NBRI-03, Isolated from Agricultural Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	2
11	Mapping the â€~early salinity response' triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. Rice, 2019, 12, 3.	4.0	37
12	Perception of Stress Environment in Plants. , 2019, , 163-186.		2
13	Draft Genome Sequence of a Potential Plant Growth-Promoting Rhizobacterium, <i>Pseudomonas</i> sp. Strain CK-NBRI-02. Microbiology Resource Announcements, 2019, 8, .	0.6	3
14	Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment. Plant, Cell and Environment, 2018, 41, 947-969.	5.7	51
15	A nuclearâ€localized rice glyoxalase I enzyme, OsGLYIâ€8, functions in the detoxification of methylglyoxal in the nucleus. Plant Journal, 2017, 89, 565-576.	5.7	36
16	OsCBSCBSPB4 is a Two Cystathionine-β-Synthase Domain-containing Protein from Rice that Functions in Abiotic Stress Tolerance. Current Genomics, 2017, 19, 50-59.	1.6	11
17	Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. International Journal of Molecular Sciences, 2017, 18, 250.	4.1	25
18	OsSRO1a Interacts with RNA Binding Domain-Containing Protein (OsRBD1) and Functions in Abiotic Stress Tolerance in Yeast. Frontiers in Plant Science, 2016, 7, 62.	3.6	22

CHARANPREET KAUR

#	Article	IF	CITATIONS
19	Methylglyoxal detoxification in plants: Role of glyoxalase pathway. Indian Journal of Plant Physiology, 2016, 21, 377-390.	0.8	52
20	Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule. Frontiers in Plant Science, 2015, 6, 682.	3.6	68
21	Methylglyoxal, Triose Phosphate Isomerase, and Glyoxalase Pathway: Implications in Abiotic Stress and Signaling in Plants. , 2015, , 347-366.		12
22	Molecular cloning and characterization of salt overly sensitive gene promoter from Brassica juncea (BjSOS2). Molecular Biology Reports, 2015, 42, 1139-1148.	2.3	22
23	Stress response of <i>OsETHE1</i> is altered in response to light and dark conditions. Plant Signaling and Behavior, 2014, 9, e973820.	2.4	1
24	Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiologia Plantarum, 2014, 152, 1-16.	5.2	33
25	Glyoxalases and stress tolerance in plants. Biochemical Society Transactions, 2014, 42, 485-490.	3.4	97
26	Glyoxalase and Methylglyoxal as Biomarkers for Plant Stress Tolerance. Critical Reviews in Plant Sciences, 2014, 33, 429-456.	5.7	120
27	A unique <scp>N</scp> i ² ⁺ Ââ€dependent and methylglyoxalâ€inducible rice glyoxalaseÂ <scp>I</scp> possesses a single active site and functions in abiotic stress response. Plant Journal, 2014, 78, 951-963.	5.7	113
28	Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Scientific Reports, 2013, 3, 3076.	3.3	48