Rebecca L Greenaway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7918928/publications.pdf

Version: 2024-02-01

28 papers

1,461 citations

20 h-index 28 g-index

61 all docs

61 docs citations

61 times ranked

1488 citing authors

#	Article	IF	CITATIONS
1	Liquids with permanent porosity. Nature, 2015, 527, 216-220.	27.8	402
2	High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nature Communications, 2018, 9, 2849.	12.8	131
3	Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chemical Science, 2017, 8, 2640-2651.	7.4	115
4	Accelerated robotic discovery of type II porous liquids. Chemical Science, 2019, 10, 9454-9465.	7.4	70
5	Controlling Gas Selectivity in Molecular Porous Liquids by Tuning the Cage Window Size. Angewandte Chemie - International Edition, 2020, 59, 7362-7366.	13.8	69
6	Palladium atalyzed Cascade Cyclization of Ynamides to Azabicycles. Chemistry - A European Journal, 2011, 17, 14366-14370.	3.3	52
7	Dynamic flow synthesis of porous organic cages. Chemical Communications, 2015, 51, 17390-17393.	4.1	52
8	From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting. Angewandte Chemie - International Edition, 2019, 58, 16275-16281.	13.8	52
9	Machine Learning for Organic Cage Property Prediction. Chemistry of Materials, 2019, 31, 714-727.	6.7	50
10	Ynamide Carbopalladation: A Flexible Route to Monoâ€, Bi†and Tricyclic Azacycles. Chemistry - A European Journal, 2015, 21, 12627-12639.	3.3	43
11	Reductive Cyclization of Bromoenynamides with Alcohols as Hydride Source: Synthesis and Reactions of 2â€Amidodienes. Advanced Synthesis and Catalysis, 2012, 354, 3187-3194.	4.3	41
12	Cage Doubling: Solvent-Mediated Re-equilibration of a $[3+6]$ Prismatic Organic Cage to a Large $[6+12]$ Truncated Tetrahedron. Crystal Growth and Design, 2018, 18, 2759-2764.	3.0	34
13	Computationally-inspired discovery of an unsymmetrical porous organic cage. Nanoscale, 2018, 10, 22381-22388.	5. 6	34
14	Combining cycloisomerization with trienamine catalysis: a regiochemically flexible enantio- and diastereoselective synthesis of hexahydroindoles. Chemical Communications, 2016, 52, 693-696.	4.1	31
15	Continuous and scalable synthesis of a porous organic cage by twin screw extrusion (TSE). Chemical Science, 2020, 11, 6582-6589.	7.4	30
16	Integrating Computational and Experimental Workflows for Accelerated Organic Materials Discovery. Advanced Materials, 2021, 33, e2004831.	21.0	29
17	Palladium-catalyzed cyclization of bromoenynamides to tricyclic azacycles: synthesis of trikentrin-like frameworks. Chemical Communications, 2014, 50, 5187-5189.	4.1	28
18	Modular Type III Porous Liquids Based on Porous Organic Cage Microparticles. Advanced Functional Materials, 2021, 31, 2106116.	14.9	26

#	Article	IF	CITATION
19	Controlling Gas Selectivity in Molecular Porous Liquids by Tuning the Cage Window Size. Angewandte Chemie, 2020, 132, 7432-7436.	2.0	25
20	From Concept to Crystals via Prediction: Multiâ€Component Organic Cage Pots by Social Selfâ€Sorting. Angewandte Chemie, 2019, 131, 16421-16427.	2.0	23
21	Porous liquids – the future is looking emptier. Chemical Science, 2022, 13, 5042-5054.	7.4	22
22	Organic Cage Dumbbells. Chemistry - A European Journal, 2020, 26, 3718-3722.	3.3	19
23	Highâ€Throughput Approaches for the Discovery of Supramolecular Organic Cages. ChemPlusChem, 2020, 85, 1813-1823.	2.8	17
24	Melt-quenched porous organic cage glasses. Journal of Materials Chemistry A, 2021, 9, 19807-19816.	10.3	15
25	Computational screening for nested organic cage complexes. Molecular Systems Design and Engineering, 2020, 5, 186-196.	3.4	14
26	Materials Precursor Score: Modeling Chemists' Intuition for the Synthetic Accessibility of Porous Organic Cage Precursors. Journal of Chemical Information and Modeling, 2021, 61, 4342-4356.	5. 4	14
27	Enabling Technology for Supramolecular Chemistry. Frontiers in Chemistry, 2021, 9, 774987.	3.6	13
28	Computational discovery of molecular C60 encapsulants with an evolutionary algorithm. Communications Chemistry, 2020, 3, .	4.5	10