Steven G Van Lanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7917880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The crystal structure of <scp>AbsH3</scp> : A putative flavin adenine dinucleotideâ€dependent reductase in the abyssomicin biosynthesis pathway. Proteins: Structure, Function and Bioinformatics, 2021, 89, 132-137.	2.6	1
2	Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Natural Product Reports, 2021, 38, 1362-1407.	10.3	14
3	Structural characterization of DynU16, a START/Bet v1-like protein involved in dynemicin biosynthesis. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 328-333.	0.8	1
4	Structure and Function of a Dual Reductase–Dehydratase Enzyme System Involved in <i>p</i> -Terphenyl Biosynthesis. ACS Chemical Biology, 2021, 16, 2816-2824.	3.4	8
5	Enzymatic C _β –H Functionalization of <scp>l</scp> -Arg and <scp>l</scp> -Leu in Nonribosomally Derived Peptidyl Natural Products: A Tale of Two Oxidoreductases. Journal of the American Chemical Society, 2021, 143, 19425-19437.	13.7	6
6	Mithramycin 2′-Oximes with Improved Selectivity, Pharmacokinetics, and Ewing Sarcoma Antitumor Efficacy. Journal of Medicinal Chemistry, 2020, 63, 14067-14086.	6.4	8
7	Pyridoxal-5′-phosphate-dependent alkyl transfer in nucleoside antibiotic biosynthesis. Nature Chemical Biology, 2020, 16, 904-911.	8.0	24
8	Sugar-Pirating as an Enabling Platform for the Synthesis of 4,6-Dideoxyhexoses. Journal of the American Chemical Society, 2020, 142, 9389-9395.	13.7	7
9	Theranostic Gallium Siderophore Ciprofloxacin Conjugate with Broad Spectrum Antibiotic Potency. Journal of Medicinal Chemistry, 2019, 62, 9947-9960.	6.4	47
10	Biosynthetic and Synthetic Strategies for Assembling Capuramycin-Type Antituberculosis Antibiotics. Molecules, 2019, 24, 433.	3.8	12
11	Refining and expanding nonribosomal peptide synthetase function and mechanism. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 493-513.	3.0	36
12	Macrolide derivatives reduce proinflammatory macrophage activation and macrophageâ€mediated neurotoxicity. CNS Neuroscience and Therapeutics, 2019, 25, 591-600.	3.9	30
13	Baraphenazines A–G, Divergent Fused Phenazine-Based Metabolites from a Himalayan <i>Streptomyces</i> . Journal of Natural Products, 2019, 82, 1686-1693.	3.0	25
14	Total synthesis of griseusins and elucidation of the griseusin mechanism of action. Chemical Science, 2019, 10, 7641-7648.	7.4	13
15	Introduction to the special issue: "Natural Product Discovery and Development in the Genomic Era: 2019― Journal of Industrial Microbiology and Biotechnology, 2019, 46, 249-249.	3.0	1
16	Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated <i>Streptomyces</i> . Journal of Natural Products, 2019, 82, 3469-3476.	3.0	12
17	Insights into the Target Interaction of Naturally Occurring Muraymycin Nucleoside Antibiotics. ChemMedChem, 2018, 13, 779-784.	3.2	28
18	Pyridoxal-5′-phosphate as an oxygenase cofactor: Discovery of a carboxamide-forming, α-amino acid monooxygenase-decarboxylase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 974-979.	7.1	26

#	Article	IF	CITATIONS
19	Antibacterial Muraymycins from Mutant Strains of <i>Streptomyces</i> sp. NRRL 30471. Journal of Natural Products, 2018, 81, 942-948.	3.0	26
20	Enzymatic Synthesis of the Ribosylated Glycyl-Uridine Disaccharide Core of Peptidyl Nucleoside Antibiotics. Journal of Organic Chemistry, 2018, 83, 7239-7249.	3.2	11
21	Self-Resistance during Muraymycin Biosynthesis: a Complementary Nucleotidyltransferase and Phosphotransferase with Identical Modification Sites and Distinct Temporal Order. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	16
22	Evidence that oxidative dephosphorylation by the nonheme Fe(<scp>II</scp>), αâ€ketoglutarate: <scp>UMP</scp> oxygenase occurs by stereospecific hydroxylation. FEBS Letters, 2017, 591, 468-478.	2.8	11
23	Bi- and Tetracyclic Spirotetronates from the Coal Mine Fire Isolate <i>Streptomyces</i> sp. LC-6-2. Journal of Natural Products, 2017, 80, 1141-1149.	3.0	32
24	SAM cycles up for colibactin. Nature Chemical Biology, 2017, 13, 1059-1061.	8.0	3
25	Computer-aided drug design of capuramycin analogues as anti-tuberculosis antibiotics by 3D-QSAR and molecular docking. Open Chemistry, 2017, 15, 299-307.	1.9	4
26	Functional AdoMet Isosteres Resistant to Classical AdoMet Degradation Pathways. ACS Chemical Biology, 2016, 11, 2484-2491.	3.4	36
27	Antibacterial and Cytotoxic Actinomycins Y ₆ –Y ₉ and Zp from <i>Streptomyces</i> sp. Strain Gö-GS12. Journal of Natural Products, 2016, 79, 2731-2739.	3.0	39
28	The Role of a Nonribosomal Peptide Synthetase in <scp>l</scp> ‣ysine Lactamization During Capuramycin Biosynthesis. ChemBioChem, 2016, 17, 804-810.	2.6	10
29	A biocatalytic approach to capuramycin analogues by exploiting a substrate permissive N-transacylase CapW. Organic and Biomolecular Chemistry, 2016, 14, 3956-3962.	2.8	16
30	A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin. Applied and Environmental Microbiology, 2016, 82, 467-477.	3.1	20
31	The Biosynthesis of Capuramycin-type Antibiotics. Journal of Biological Chemistry, 2015, 290, 13710-13724.	3.4	28
32	Terfestatins B and C, New <i>p</i> -Terphenyl Glycosides Produced by <i>Streptomyces</i> sp. RM-5–8. Organic Letters, 2015, 17, 2796-2799.	4.6	42
33	Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome. Molecular BioSystems, 2015, 11, 338-353.	2.9	99
34	Microbial genome mining for accelerated natural products discovery: is a renaissance in the making?. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 175-184.	3.0	226
35	Facile Chemoenzymatic Strategies for the Synthesis and Utilization of <i>S</i> â€Adenosylâ€ <scp>L</scp> â€Methionine Analogues. Angewandte Chemie - International Edition, 2014, 53, 3965-3969.	13.8	120
36	Structureâ€Based Gene Targeting Discovery of Sphaerimicin, a Bacterial Translocaseâ€I Inhibitor. Angewandte Chemie - International Edition, 2013, 52, 11607-11611.	13.8	27

STEVEN G VAN LANEN

#	Article	IF	CITATIONS
37	A sulfonate relay revealed. Nature Chemical Biology, 2013, 9, 602-603.	8.0	3
38	The muraminomicin biosynthetic gene cluster and enzymatic formation of the 2-deoxyaminoribosyl appendage. MedChemComm, 2013, 4, 239-243.	3.4	18
39	Roles of the Synergistic Reductive <i>O</i> -Methyltransferase GilM and of <i>O</i> -Methyltransferase GilMT in the Gilvocarcin Biosynthetic Pathway. Journal of the American Chemical Society, 2012, 134, 12402-12405.	13.7	18
40	Cooperation of Two Bifunctional Enzymes in the Biosynthesis and Attachment of Deoxysugars of the Antitumor Antibiotic Mithramycin. Angewandte Chemie - International Edition, 2012, 51, 10638-10642.	13.8	27
41	Amalgamation of Nucleosides and Amino Acids in Antibiotic Biosynthesis: Discovery of an <scp>l</scp> -Threonine:Uridine-5′-Aldehyde Transaldolase. Journal of the American Chemical Society, 2012, 134, 18514-18517.	13.7	59
42	Fe(II)-Dependent, Uridine-5′-Monophosphate α-Ketoglutarate Dioxygenases in the Synthesis of 5′-Modified Nucleosides. Methods in Enzymology, 2012, 516, 153-168.	1.0	8
43	Biosynthesis of Albomycin δ ₂ Provides a Template for Assembling Siderophore and Aminoacyl-tRNA Synthetase Inhibitor Conjugates. ACS Chemical Biology, 2012, 7, 1565-1575.	3.4	59
44	Biosynthetic Origin and Mechanism of Formation of the Aminoribosyl Moiety of Peptidyl Nucleoside Antibiotics. Journal of the American Chemical Society, 2011, 133, 14452-14459.	13.7	36
45	Characterization of LipL as a Non-heme, Fe(II)-dependent α-Ketoglutarate:UMP Dioxygenase That Generates Uridine-5′-aldehyde during A-90289 Biosynthesis*. Journal of Biological Chemistry, 2011, 286, 7885-7892.	3.4	47
46	A High-Throughput Screen for Directed Evolution of the Natural Product Sulfotransferase LipB. Journal of Biomolecular Screening, 2011, 16, 845-851.	2.6	4
47	The Biosynthesis of Liposidomycinâ€like Aâ€90289 Antibiotics Featuring a New Type of Sulfotransferase. ChemBioChem, 2010, 11, 184-190.	2.6	53
48	Characterization of a dual specificity aryl acid adenylation enzyme with dual function in nikkomycin biosynthesis. Biopolymers, 2010, 93, 791-801.	2.4	15
49	An ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nature Chemical Biology, 2010, 6, 581-586.	8.0	57
50	Functional and Kinetic Analysis of the Phosphotransferase CapP Conferring Selective Self-resistance to Capuramycin Antibiotics. Journal of Biological Chemistry, 2010, 285, 12899-12905.	3.4	21
51	Delineating the earliest steps of gilvocarcin biosynthesis: role of GilP and GilQ in starter unit specificity. Organic and Biomolecular Chemistry, 2010, 8, 3851.	2.8	11
52	A free-standing condensation enzyme catalyzing ester bond formation in C-1027 biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4183-4188.	7.1	80
53	Identification of the biosynthetic gene cluster of A-500359s in Streptomyces griseus SANK60196. Journal of Antibiotics, 2009, 62, 325-332.	2.0	34
54	Characterization of SgcE6, the flavin reductase component supporting FAD-dependent halogenation and hydroxylation in the biosynthesis of the enediyne antitumor antibiotic C-1027. FEMS Microbiology Letters, 2009, 300, 237-241.	1.8	19

STEVEN G VAN LANEN

#	Article	IF	CITATIONS
55	chapter 5 Iterative Type I Polyketide Synthases for Enediyne Core Biosynthesis. Methods in Enzymology, 2009, 459, 97-112.	1.0	22
56	Characterization of the Two-Component, FAD-Dependent Monooxygenase SgcC That Requires Carrier Protein-Tethered Substrates for the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Journal of the American Chemical Society, 2008, 130, 6616-6623.	13.7	37
57	The Role of Tandem Acyl Carrier Protein Domains in Polyunsaturated Fatty Acid Biosynthesis. Journal of the American Chemical Society, 2008, 130, 6336-6337.	13.7	83
58	Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 494-499.	7.1	49
59	A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1460-1465.	7.1	87
60	Biosynthesis of Enediyne Antitumor Antibiotics. Current Topics in Medicinal Chemistry, 2008, 8, 448-459.	2.1	91
61	Advances in polyketide synthase structure and function. Current Opinion in Drug Discovery & Development, 2008, 11, 186-95.	1.9	12
62	Characterization of the Maduropeptin Biosynthetic Gene Cluster from <i>Actinomadura madurae</i> ATCC 39144 Supporting a Unifying Paradigm for Enediyne Biosynthesis. Journal of the American Chemical Society, 2007, 129, 13082-13094.	13.7	134
63	Regiospecific Chlorination of (<i>S</i>)-β-Tyrosyl- <i>S</i> -Carrier Protein Catalyzed by SgcC3 in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Journal of the American Chemical Society, 2007, 129, 12432-12438.	13.7	87
64	Characterization of NcsB2 as a Promiscuous Naphthoic Acid/Coenzyme A Ligase Integral to the Biosynthesis of the Enediyne Antitumor Antibiotic Neocarzinostatin. Journal of the American Chemical Society, 2007, 129, 7728-7729.	13.7	27
65	Progress in combinatorial biosynthesis for drug discovery. Drug Discovery Today: Technologies, 2006, 3, 285-292.	4.0	14
66	The Bifunctional Glyceryl Transferase/Phosphatase OzmB Belonging to the HAD Superfamily That Diverts 1,3-Bisphosphoglycerate into Polyketide Biosynthesis. Journal of the American Chemical Society, 2006, 128, 10386-10387.	13.7	51
67	Microbial genomics for the improvement of natural product discovery. Current Opinion in Microbiology, 2006, 9, 252-260.	5.1	146
68	Substrate Specificity of the Adenylation Enzyme SgcC1 Involved in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Journal of Biological Chemistry, 2006, 281, 29633-29640.	3.4	29
69	The Neocarzinostatin Biosynthetic Gene Cluster from Streptomyces carzinostaticus ATCC 15944 Involving Two Iterative Type I Polyketide Synthases. Chemistry and Biology, 2005, 12, 293-302.	6.0	125
70	From cyclohydrolase to oxidoreductase: Discovery of nitrile reductase activity in a common fold. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4264-4269.	7.1	100
71	Biosynthesis of the β-Amino Acid Moiety of the Enediyne Antitumor Antibiotic C-1027 Featuring β-Amino Acyl-S-carrier Protein Intermediates. Journal of the American Chemical Society, 2005, 127, 11594-11595.	13.7	49
72	Antitumor Antibiotics:  Bleomycin, Enediynes, and Mitomycin. Chemical Reviews, 2005, 105, 739-758.	47.7	502

#	ARTICLE	IF	CITATIONS
73	tRNA Modification by S-Adenosylmethionine:tRNA Ribosyltransferase-Isomerase. Journal of Biological Chemistry, 2003, 278, 10491-10499.	3.4	42
74	Hypermodification of tRNA in Thermophilic Archaea. Journal of Biological Chemistry, 2000, 275, 28731-28738.	3.4	39