Sean Connolly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916868/publications.pdf

Version: 2024-02-01

		36303	14759
132	18,601	51	127
papers	citations	h-index	g-index
1.40	1.40	1.40	10710
140	140	140	13719
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reply to: Conclusions of low extinction risk for most species of reef-building corals are premature. Nature Ecology and Evolution, 2022, 6, 359-360.	7.8	O
2	Global warming decreases connectivity among coral populations. Nature Climate Change, 2022, 12, 83-87.	18.8	25
3	Interactive effects of multiple stressors vary with consumer interactions, stressor dynamics and magnitude. Ecology Letters, 2022, 25, 1483-1496.	6.4	30
4	Volatility in coral cover erodes niche structure, but not diversity, in reef fish assemblages. Science Advances, 2022, 8, .	10.3	7
5	The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nature Ecology and Evolution, 2021, 5, 663-669.	7.8	36
6	The Coral Reef Sentinels Program: A Mars Shot for Blue Planetary Health. Marine Technology Society Journal, 2021, 55, 118-119.	0.4	0
7	Natural experiments and long-term monitoring are critical to understand and predict marine host–microbe ecology and evolution. PLoS Biology, 2021, 19, e3001322.	5.6	17
8	The spatial footprint and patchiness of largeâ€scale disturbances on coral reefs. Global Change Biology, 2021, 27, 4825-4838.	9.5	26
9	Coral adaptation to climate change: Metaâ€analysis reveals high heritability across multiple traits. Global Change Biology, 2021, 27, 5694-5710.	9.5	31
10	An Indo-Pacific coral spawning database. Scientific Data, 2021, 8, 35.	5. 3	34
11	Emergent properties in the responses of tropical corals to recurrent climate extremes. Current Biology, 2021, 31, 5393-5399.e3.	3.9	65
12	Hierarchical modeling strengthens evidence for density dependence in observational time series of population dynamics. Ecology, 2020, 101, e02893.	3.2	12
13	Human exploitation shapes productivity–biomass relationships on coral reefs. Global Change Biology, 2020, 26, 1295-1305.	9.5	31
14	Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201432.	2.6	58
15	Partitioning colony size variation into growth and partial mortality. Biology Letters, 2020, 16, 20190727.	2.3	24
16	Marine reserves stabilize fish populations and fisheries yields in disturbed coral reef systems. Ecological Applications, 2019, 29, e01905.	3.8	15
17	The molecular biogeography of the Indoâ€Pacific: Testing hypotheses with multispecies genetic patterns. Global Ecology and Biogeography, 2019, 28, 943-960.	5.8	43
18	Highâ€frequency sampling and piecewise models reshape dispersal kernels of a common reef coral. Ecology, 2019, 100, e02730.	3.2	7

#	Article	IF	CITATIONS
19	Global warming impairs stock–recruitment dynamics of corals. Nature, 2019, 568, 387-390.	27.8	378
20	Ecological memory modifies the cumulative impact of recurrent climate extremes. Nature Climate Change, 2019, 9, 40-43.	18.8	253
21	Global warming transforms coral reef assemblages. Nature, 2018, 556, 492-496.	27.8	1,173
22	Mechanism, Process, and Causation in Ecological Models: A Reply to McGill and Potochnik. Trends in Ecology and Evolution, 2018, 33, 305-306.	8.7	2
23	Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 2018, 359, 80-83.	12.6	1,515
24	Negligible effect of competition on coral colony growth. Ecology, 2018, 99, 1347-1356.	3.2	19
25	Node selfâ€connections and metapopulation persistence: reply to Saura (2018). Ecology Letters, 2018, 21, 605-606.	6.4	0
26	Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Marine Ecology - Progress Series, 2018, 604, 263-268.	1.9	42
27	A unified model explains commonness and rarity on coral reefs. Ecology Letters, 2017, 20, 477-486.	6.4	23
28	Network theory and metapopulation persistence: incorporating node selfa \in connections. Ecology Letters, 2017, 20, 815-831.	6.4	21
29	Allometric growth in reef-building corals. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170053.	2.6	51
30	Enhancing student engagement to positively impact mathematics anxiety, confidence and achievement for interdisciplinary science subjects. International Journal of Mathematical Education in Science and Technology, 2017, 48, 1153-1165.	1.4	18
31	Global warming and recurrent mass bleaching of corals. Nature, 2017, 543, 373-377.	27.8	2,363
32	No change in subordinate butterflyfish diets following removal of behaviourally dominant species. Coral Reefs, 2017, 36, 213-222.	2.2	1
33	Process, Mechanism, and Modeling in Macroecology. Trends in Ecology and Evolution, 2017, 32, 835-844.	8.7	119
34	Aggression, interference, and the functional response of coral-feeding butterflyfishes. Oecologia, 2017, 184, 675-684.	2.0	5
35	Prevalence of multimodal species abundance distributions is linked to spatial and taxonomic breadth. Global Ecology and Biogeography, 2017, 26, 203-215.	5.8	16
36	A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs. Oecologia, 2017, 183, 161-175.	2.0	38

#	Article	IF	Citations
37	Uncoupling temperature-dependent mortality from lipid depletion for scleractinian coral larvae. Coral Reefs, 2017, 36, 97-104.	2.2	23
38	Flow and Coral Morphology Control Coral Surface pH: Implications for the Effects of Ocean Acidification. Frontiers in Marine Science, 2016, 3, .	2.5	33
39	Fishery consequences of marine reserves: shortâ€term pain for longerâ€term gain. Ecological Applications, 2016, 26, 818-829.	3.8	36
40	A critique of claims for negative impacts of Marine Protected Areas on fisheries. Ecological Applications, 2016, 26, 637-641.	3.8	20
41	The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Scientific Data, 2016, 3, 160017.	5.3	189
42	Synergistic Effects of Marine Reserves and Harvest Controls on the Abundance and Catch Dynamics of a Coral Reef Fishery. Current Biology, 2016, 26, 1543-1548.	3.9	25
43	Fecundity and the demographic strategies of coral morphologies. Ecology, 2016, 97, 3485-3493.	3.2	71
44	Integrating modelling of biodiversity composition and ecosystem function. Oikos, 2016, 125, 10-19.	2.7	32
45	Improving dynamic phytoplankton reserve-utilization models with an indirect proxy for internal nitrogen. Journal of Theoretical Biology, 2016, 404, 1-9.	1.7	1
46	Standard flow cytometry as a rapid and non-destructive proxy for cell nitrogen quota. Journal of Applied Phycology, 2016, 28, 1085-1095.	2.8	7
47	Nutrient utilization traits vary systematically with intraspecific cell size plasticity. Functional Ecology, 2016, 30, 1745-1755.	3.6	8
48	A Trait-Based Approach to Advance Coral Reef Science. Trends in Ecology and Evolution, 2016, 31, 419-428.	8.7	161
49	Multi-scale patterns and processes in reef fish abundance. , 2015, , 116-124.		11
50	Phylogenetic community structure when competition and environmental filtering determine abundances. Global Ecology and Biogeography, 2015, 24, 1390-1400.	5.8	17
51	Coupled dynamics of territorial damselfishes and juvenile corals on the reef crest. Coral Reefs, 2015, 34, 1-11.	2.2	29
52	Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens. Scientific Reports, 2015, 5, 11903.	3.3	85
53	An experimentally validated nitrate–ammonium–phytoplankton model including effects of starvation length and ammonium inhibition on nitrate uptake. Ecological Modelling, 2015, 317, 30-40.	2.5	11
54	Mechanical vulnerability explains sizeâ€dependent mortality of reef corals. Ecology Letters, 2014, 17, 1008-1015.	6.4	142

#	Article	IF	Citations
55	Evidence for multiple stressor interactions and effects on coral reefs. Global Change Biology, 2014, 20, 681-697.	9.5	307
56	Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Global Ecology and Biogeography, 2014, 23, 517-529.	5.8	80
57	Double Jeopardy and Global Extinction Risk in Corals and Reef Fishes. Current Biology, 2014, 24, 2946-2951.	3.9	47
58	Commonness and rarity in the marine biosphere. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8524-8529.	7.1	99
59	Increased local retention of reef coral larvae as a result of ocean warming. Nature Climate Change, 2014, 4, 498-502.	18.8	94
60	Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141032.	2.6	84
61	How robust are estimates of coral reef shark depletion?. Biological Conservation, 2014, 176, 39-47.	4.1	38
62	Geographic ranges of reef corals (Cnidaria: Anthozoa: Scleractinia) in the Indoâ€Pacific. Ecology, 2013, 94, 1659-1659.	3.2	15
63	Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130818.	2.6	87
64	Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecology Letters, 2013, 16, 140-150.	6.4	329
65	Sensitivity of coral calcification to ocean acidification: a metaâ€analysis. Global Change Biology, 2013, 19, 282-290.	9.5	279
66	Relationships between temperature, bleaching and white syndrome on the Great Barrier Reef. Coral Reefs, 2013, 32, 1-12.	2.2	40
67	Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae. Oecologia, 2013, 173, 431-438.	2.0	31
68	Rapid declines in metabolism explain extended coral larval longevity. Coral Reefs, 2013, 32, 539-549.	2.2	35
69	Effects of diversityâ€dependent colonization–extinction dynamics on the midâ€domain effect. Global Ecology and Biogeography, 2013, 22, 773-783.	5.8	5
70	Synthesizing larval competence dynamics and reefâ€scale retention reveals a high potential for selfâ€ecruitment in corals. Ecology, 2013, 94, 650-659.	3.2	91
71	Fossil Record. , 2013, , 537-544.		0
72	Heterospecific Aggression and Dominance in a Guild of Coral-Feeding Fishes: The Roles of Dietary Ecology and Phylogeny. American Naturalist, 2013, 182, 157-168.	2.1	31

#	Article	IF	CITATIONS
73	What is macroecology?. Biology Letters, 2012, 8, 904-906.	2.3	47
74	A comparative analysis of alternative approaches to fitting species-abundance models. Journal of Plant Ecology, 2012, 5, 32-45.	2.3	8
75	Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs. Journal of Experimental Biology, 2012, 215, 968-976.	1.7	28
76	Nitrate-nitrite dynamics and phytoplankton growth: Formulation and experimental evaluation of a dynamic model. Limnology and Oceanography, 2012, 57, 1555-1571.	3.1	18
77	Effects of sex change on the implications of marine reserves for fisheries. , 2012, 22, 778-791.		18
78	Species Differences Drive Nonneutral Structure in Pleistocene Coral Communities. American Naturalist, 2012, 180, 577-588.	2.1	14
79	Fitness consequences of female multiple mating: A direct test of indirect benefits. BMC Evolutionary Biology, 2012, 12, 185.	3.2	21
80	Diversity and stability of herbivorous fishes on coral reefs. Ecology, 2012, 93, 891-901.	3.2	71
81	Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs, 2012, 31, 951-960.	2.2	53
82	Risk spreading, connectivity, and optimal reserve spacing. Ecological Applications, 2012, 22, 311-321.	3.8	26
83	Biogeography and the structure of coral reef fish communities on isolated islands. Journal of Biogeography, 2012, 39, 130-139.	3.0	30
84	Dispersal-mediated coexistence under recruitment limitation and displacement competition. Ecological Modelling, 2012, 243, 133-142.	2.5	10
85	Calcification, Storm Damage and Population Resilience of Tabular Corals under Climate Change. PLoS ONE, 2012, 7, e46637.	2.5	82
86	Projecting Coral Reef Futures Under Global Warming and Ocean Acidification. Science, 2011, 333, 418-422.	12.6	1,001
87	Spatial variance in abundance and occupancy of corals across broad geographic scales. Ecology, 2011, 92, 1282-1291.	3.2	8
88	A simple approximation for larval retention around reefs. Coral Reefs, 2011, 30, 593-605.	2.2	14
89	The Future of Coral Reefsâ€"Response. Science, 2011, 334, 1495-1496.	12.6	8
90	Population Growth Rates of Reef Sharks with and without Fishing on the Great Barrier Reef: Robust Estimation with Multiple Models. PLoS ONE, 2011, 6, e25028.	2.5	52

#	Article	IF	CITATIONS
91	Biotic and abiotic correlates of tissue quality for common scleractinian corals. Marine Ecology - Progress Series, 2011, 438, 119-128.	1.9	12
92	Effects of asymmetric dispersal on the coexistence of competing species. Ecology Letters, 2010, 13, 432-441.	6.4	60
93	Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology, 2010, 91, 3572-3583.	3.2	161
94	Early post-settlement mortality and the structure of coral assemblages. Marine Ecology - Progress Series, 2010, 408, 55-64.	1.9	148
95	Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. Coral Reefs, 2009, 28, 339-351.	2.2	314
96	Connectivity, regime shifts and the resilience of coral reefs. Coral Reefs, 2009, 28, 949-957.	2.2	79
97	Effects of photoacclimation on the light niche of corals: a process-based approach. Marine Biology, 2009, 156, 2493-2503.	1.5	18
98	Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 2009, 12, 873-886.	6.4	286
99	Defining fundamental niche dimensions of corals: synergistic effects of colony size, light, and flow. Ecology, 2009, 90, 767-780.	3.2	54
100	Testing species abundance models: a new bootstrap approach applied to Indoâ€Pacific coral reefs. Ecology, 2009, 90, 3138-3149.	3.2	38
101	Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs, 2008, 27, 529-539.	2,2	232
102	Multiple modes in a coral species abundance distribution. Ecology Letters, 2008, 11, 1008-1016.	6.4	66
103	INTERACTIONS BETWEEN MORPHOLOGICAL AND PHYSIOLOGICAL PLASTICITY OPTIMIZE ENERGY ACQUISITION IN CORALS. Ecology, 2008, 89, 1144-1154.	3.2	85
104	Climate-mediated mechanical changes to post-disturbance coral assemblages. Biology Letters, 2008, 4, 490-493.	2.3	50
105	REGIONAL VARIATION IN THE HIERARCHICAL PARTITIONING OF DIVERSITY IN CORAL-DWELLING FISHES. Ecology, 2008, 89, 2829-2840.	3.2	41
106	Bleaching, energetics, and coral mortality risk: Effects of temperature, light, and sediment regime. Limnology and Oceanography, 2007, 52, 716-726.	3.1	210
107	Coral reef diversity refutes the neutral theory of biodiversity. Nature, 2006, 440, 80-82.	27.8	234
108	Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature, 2006, 444, 477-480.	27.8	285

#	Article	IF	Citations
109	Scaling water motion on coral reefs: from regional to organismal scales. Coral Reefs, 2006, 25, 635-644.	2.2	58
110	Ongoing Collapse of Coral-Reef Shark Populations. Current Biology, 2006, 16, 2314-2319.	3.9	286
111	Energetic cost of photoinhibition in corals. Marine Ecology - Progress Series, 2006, 313, 1-12.	1.9	81
112	Environmental and geometric constraints on Indo-Pacific coral reef biodiversity. Ecology Letters, 2005, 8, 643-651.	6.4	165
113	Adaptive variation in coral geometry and the optimization of internal colony light climates. Functional Ecology, 2005, 19, 17-26.	3.6	88
114	Community Structure of Corals and Reef Fishes at Multiple Scales. Science, 2005, 309, 1363-1365.	12.6	140
115	Processâ€Based Models of Species Distributions and the Midâ€Domain Effect. American Naturalist, 2005, 166, 1-11.	2.1	89
116	Environmental limits to growth: physiological niche boundaries of corals along turbidity–light gradients. Oecologia, 2004, 141, 373-384.	2.0	108
117	INDO-PACIFIC BIODIVERSITY OF CORAL REEFS: DEVIATIONS FROM A MID-DOMAIN MODEL. Ecology, 2003, 84, 2178-2190.	3.2	175
118	Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science, 2003, 301, 929-933.	12.6	3,124
119	SPACE PREEMPTION, SIZE-DEPENDENT COMPETITION, AND THE COEXISTENCE OF CLONAL GROWTH FORMS. Ecology, 2003, 84, 2979-2988.	3.2	29
120	Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnology and Oceanography, 2002, 47, 1417-1429.	3.1	126
121	Global Ordovician faunal transitions in the marine benthos: ultimate causes. Paleobiology, 2002, 28, 26-40.	2.0	42
122	Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecology Letters, 2002, 5, 775-784.	6.4	311
123	Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited. Paleobiology, 2001, 27, 751-767.	2.0	67
124	Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology, 2001, 27, 768-778.	2.0	47
125	A LATITUDINAL GRADIENT IN RECRUITMENT OF INTERTIDAL INVERTEBRATES IN THE NORTHEAST PACIFIC OCEAN. Ecology, 2001, 82, 1799-1813.	3.2	263
126	Global Ordovician faunal transitions in the marine benthos: proximate causes. Paleobiology, 2001, 27, 779-795.	2.0	36

#	Article	IF	CITATIONS
127	A Latitudinal Gradient in Recruitment of Intertidal Invertebrates in the Northeast Pacific Ocean. Ecology, 2001, 82, 1799.	3.2	7
128	Fossil Record., 2001,, 53-62.		0
129	THEORY OF MARINE COMMUNITIES: COMPETITION, PREDATION, AND RECRUITMENT-DEPENDENT INTERACTION STRENGTH. Ecological Monographs, 1999, 69, 277-296.	5.4	125
130	Increased recruitment of northeast Pacific barnacles during the 1997 El Niño. Limnology and Oceanography, 1999, 44, 466-469.	3.1	55
131	A Latitudinal Gradient in Northeast Pacific Intertidal Community Structure: Evidence for an Oceanographically Based Synthesis of Marine Community Theory. American Naturalist, 1998, 151, 311-326.	2.1	171
132	Macroecological Theory and the Analysis of Species Richness Gradients. , 0, , 279-309.		17