
James R Krycer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916696/publications.pdf Version: 2024-02-01

INMES P KOVCED

#	Article	IF	CITATIONS
1	A cell culture platform for quantifying metabolic substrate oxidation in bicarbonate-buffered medium. Journal of Biological Chemistry, 2022, 298, 101547.	3.4	1
2	Trafficking regulator of GLUT4-1 (TRARG1) is a GSK3 substrate. Biochemical Journal, 2022, 479, 1237-1256.	3.7	11
3	Metabolic buffer analysis reveals the simultaneous, independent control of ATP and adenylate energy ratios. Journal of the Royal Society Interface, 2021, 18, 20200976.	3.4	2
4	Cannabichromene and Δ ⁹ -Tetrahydrocannabinolic Acid Identified as Lactate Dehydrogenase-A Inhibitors by <i>in Silico</i> and <i>in Vitro</i> Screening. Journal of Natural Products, 2021, 84, 1469-1477.	3.0	6
5	Genome-wide analysis in <i>Drosophila</i> reveals diet-by-gene interactions and uncovers diet-responsive genes. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
6	Dissecting the biology of mTORC1 beyond rapamycin. Science Signaling, 2021, 14, eabe0161.	3.6	10
7	Lactate production is a prioritized feature of adipocyte metabolism. Journal of Biological Chemistry, 2020, 295, 83-98.	3.4	44
8	Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes. Journal of Biological Chemistry, 2020, 295, 99-110.	3.4	20
9	Kinetic Trans-omic Analysis Reveals Key Regulatory Mechanisms for Insulin-Regulated Glucose Metabolism in Adipocytes. IScience, 2020, 23, 101479.	4.1	17
10	Insulin signaling requires glucose to promote lipid anabolism in adipocytes. Journal of Biological Chemistry, 2020, 295, 13250-13266.	3.4	31
11	Temporal ordering of omics and multiomic events inferred from time-series data. Npj Systems Biology and Applications, 2020, 6, 22.	3.0	10
12	ls Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases?. Endocrine Reviews, 2020, 41, .	20.1	76
13	Dynamic 13C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin. IScience, 2020, 23, 100855.	4.1	24
14	Muscle and adipose tissue insulin resistance: malady without mechanism?. Journal of Lipid Research, 2019, 60, 1720-1732.	4.2	91
15	A modified gas-trapping method for high-throughput metabolic experiments inDrosophila melanogaster. BioTechniques, 2019, 67, 123-125.	1.8	7
16	Rate-oriented trans-omics: integration of multiple omic data on the basis of reaction kinetics. Current Opinion in Systems Biology, 2019, 15, 109-120.	2.6	9
17	Serine 474 phosphorylation is essential for maximal Akt2 kinase activity in adipocytes. Journal of Biological Chemistry, 2019, 294, 16729-16739.	3.4	32
18	Lipid and glucose metabolism in hepatocyte cell lines and primary mouse hepatocytes: a comprehensive resource for in vitro studies of hepatic metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E578-E589.	3.5	71

JAMES R KRYCER

#	Article	IF	CITATIONS
19	High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry, 2018, 293, 5731-5745.	3.4	65
20	The transcriptional response to oxidative stress is part of, but not sufficient for, insulin resistance in adipocytes. Scientific Reports, 2018, 8, 1774.	3.3	9
21	Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. Journal of Biological Chemistry, 2018, 293, 7315-7328.	3.4	110
22	Membrane Topology of Trafficking Regulator of GLUT4 1 (TRARG1). Biochemistry, 2018, 57, 3606-3615.	2.5	4
23	A gas trapping method for high-throughput metabolic experiments. BioTechniques, 2018, 64, 27-29.	1.8	5
24	Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. ELife, 2018, 7, .	6.0	91
25	Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E258-E266.	3.5	25
26	Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer, 2018, 18, 689.	2.6	43
27	Bicarbonate alters cellular responses in respiration assays. Biochemical and Biophysical Research Communications, 2017, 489, 399-403.	2.1	11
28	The amino acid transporter, <scp>SLC</scp> 1A3, is plasma membraneâ€localised in adipocytes and its activity is insensitive to insulin. FEBS Letters, 2017, 591, 322-330.	2.8	16
29	Improved Akt reporter reveals intra- and inter-cellular heterogeneity and oscillations in signal transduction. Journal of Cell Science, 2017, 130, 2757-2766.	2.0	15
30	Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism. Cell Reports, 2017, 21, 3536-3547.	6.4	55
31	Defining the Nutritional and Metabolic Context of FGF21ÂUsing the Geometric Framework. Cell Metabolism, 2016, 24, 555-565.	16.2	164
32	mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 2016, 5, 646-655.	6.5	44
33	14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function. Nature Communications, 2016, 7, 12862.	12.8	49
34	Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies. PLoS ONE, 2016, 11, e0157763.	2.5	14
35	ORTI: An Open-Access Repository of Transcriptional Interactions for Interrogating Mammalian Gene Expression Data. PLoS ONE, 2016, 11, e0164535.	2.5	19
36	SnapShot: Insulin/IGF1 Signaling. Cell, 2015, 161, 948-948.e1.	28.9	19

JAMES R KRYCER

#	Article	IF	CITATIONS
37	Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a Novel Regulator of Insulin Action in Adipocytes. Journal of Biological Chemistry, 2015, 290, 23528-23542.	3.4	50
38	Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 25834-25846.	3.4	50
39	The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e95598.	2.5	21
40	Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular Metabolism, 2014, 3, 630-641.	6.5	68
41	A Practical Comparison of Ligation-Independent Cloning Techniques. PLoS ONE, 2013, 8, e83888.	2.5	65
42	A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products. Biochemical Journal, 2012, 446, 191-201.	3.7	59
43	The Akt–SREBP nexus: cell signaling meets lipid metabolism. Trends in Endocrinology and Metabolism, 2010, 21, 268-276.	7.1	275
44	High throughput protein-protein interaction data: clues for the architecture of protein complexes. Proteome Science, 2008, 6, 32.	1.7	2