
Amanda E Hargrove

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916668/publications.pdf Version: 2024-02-01

AMANDA E HARCROVE

#	Article	IF	CITATIONS
1	Quantitative Structure–Activity Relationship (QSAR) Study Predicts Small-Molecule Binding to RNA Structure. Journal of Medicinal Chemistry, 2022, 65, 7262-7277.	6.4	21
2	R-BIND 2.0: An Updated Database of Bioactive RNA-Targeting Small Molecules and Associated RNA Secondary Structures. ACS Chemical Biology, 2022, 17, 1556-1566.	3.4	20
3	RT-qPCR as a screening platform for mutational and small molecule impacts on structural stability of RNA tertiary structures. RSC Chemical Biology, 2022, 3, 905-915.	4.1	0
4	Targeting RNA with small molecules: from fundamental principles towards the clinic. Chemical Society Reviews, 2021, 50, 2224-2243.	38.1	118
5	Frameworks for targeting RNA with small molecules. Journal of Biological Chemistry, 2021, 296, 100191.	3.4	35
6	Small molecule targeting of biologically relevant RNA tertiary and quaternary structures. Cell Chemical Biology, 2021, 28, 594-609.	5.2	28
7	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	3.8	13
8	Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. Science Advances, 2021, 7, eabl6096.	10.3	31
9	The next 20 years of <i>Medicinal Research Reviews</i> . Medicinal Research Reviews, 2020, 40, 7-8.	10.5	0
10	Demonstration that Small Molecules can Bind and Stabilize Low-abundance Short-lived RNA Excited Conformational States. Journal of Molecular Biology, 2020, 432, 1297-1304.	4.2	16
11	Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans. Nucleic Acids Research, 2020, 48, 7653-7664.	14.5	43
12	IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex. Nature Communications, 2020, 11, 4775.	12.8	54
13	Small molecule–RNA targeting: starting with the fundamentals. Chemical Communications, 2020, 56, 14744-14756.	4.1	35
14	Systematic analysis of the interactions driving small molecule–RNA recognition. RSC Medicinal Chemistry, 2020, 11, 802-813.	3.9	33
15	Template-guided selection of RNA ligands using imine-based dynamic combinatorial chemistry. Chemical Communications, 2020, 56, 3555-3558.	4.1	11
16	Differentiation and classification of RNA motifs using small molecule-based pattern recognition. Methods in Enzymology, 2019, 623, 101-130.	1.0	3
17	Preface. Methods in Enzymology, 2019, 623, xv-xvii.	1.0	0
18	R-BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes. ACS Chemical Biology, 2019, 14, 2691-2700.	3.4	57

Amanda E Hargrove

#	Article	IF	CITATIONS
19	Fluorescent peptide displacement as a general assay for screening small molecule libraries against RNA. Organic and Biomolecular Chemistry, 2019, 17, 1778-1786.	2.8	32
20	Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA. Methods, 2019, 167, 3-14.	3.8	48
21	Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNA–Small Molecule Interactions. ACS Chemical Biology, 2019, 14, 824-838.	3.4	29
22	Visualizing RNA Conformational Changes via Pattern Recognition of RNA by Small Molecules. Journal of the American Chemical Society, 2019, 141, 5692-5698.	13.7	18
23	Driving factors in amiloride recognition of HIV RNA targets. Organic and Biomolecular Chemistry, 2019, 17, 9313-9320.	2.8	20
24	RNA Structural Differentiation: Opportunities with Pattern Recognition. Biochemistry, 2019, 58, 199-213.	2.5	17
25	Targeting RNA in mammalian systems with small molecules. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1477.	6.4	108
26	Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNAâ€Binding Scaffold. Angewandte Chemie, 2018, 130, 13426-13431.	2.0	6
27	Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNAâ€Binding Scaffold. Angewandte Chemie - International Edition, 2018, 57, 13242-13247.	13.8	85
28	Insights into the development of chemical probes for RNA. Nucleic Acids Research, 2018, 46, 8025-8037.	14.5	55
29	Small Molecule Differentiation of RNA Structures Using Pattern Recognition. FASEB Journal, 2018, 32, 121.1.	0.5	0
30	Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR. MedChemComm, 2017, 8, 1022-1036.	3.4	60
31	Small Molecule-Based Pattern Recognition To Classify RNA Structure. Journal of the American Chemical Society, 2017, 139, 409-416.	13.7	47
32	Discovery of Key Physicochemical, Structural, and Spatial Properties of RNAâ€Targeted Bioactive Ligands. Angewandte Chemie - International Edition, 2017, 56, 13498-13502.	13.8	93
33	Sensing the impact of environment on small molecule differentiation of RNA sequences. Chemical Communications, 2017, 53, 13363-13366.	4.1	16
34	Discovery of Key Physicochemical, Structural, and Spatial Properties of RNAâ€Targeted Bioactive Ligands. Angewandte Chemie, 2017, 129, 13683-13687.	2.0	10
35	Biochemical Methods To Investigate IncRNA and the Influence of IncRNA:Protein Complexes on Chromatin. Biochemistry, 2016, 55, 1615-1630.	2.5	48
36	KDM1 class flavinâ€dependent protein lysine demethylases. Biopolymers, 2015, 104, 213-246.	2.4	53

Amanda E Hargrove

#	Article	IF	CITATIONS
37	Chapter 7. Synthetic Receptors for Oligonucleotides and Nucleic Acids. Monographs in Supramolecular Chemistry, 2015, , 253-325.	0.2	5
38	Tumor Repression of VCaP Xenografts by a Pyrrole-Imidazole Polyamide. PLoS ONE, 2015, 10, e0143161.	2.5	24
39	Activity of a Py–Im Polyamide Targeted to the Estrogen Response Element. Molecular Cancer Therapeutics, 2013, 12, 675-684.	4.1	48
40	Gene expression changes in a tumor xenograft by a pyrrole-imidazole polyamide. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16041-16045.	7.1	42
41	Pharmacokinetics of Py-Im Polyamides Depend on Architecture: Cyclic versus Linear. Journal of the American Chemical Society, 2012, 134, 7995-7999.	13.7	27
42	Characterization and Solubilization of Pyrrole–Imidazole Polyamide Aggregates. Journal of Medicinal Chemistry, 2012, 55, 5425-5432.	6.4	43
43	Chemical Functionalization of Oligodeoxynucleotides with Multiple Boronic Acids for the Polyvalent Binding of Saccharides. Bioconjugate Chemistry, 2011, 22, 388-396.	3.6	20
44	Artificial Receptors for the Recognition of Phosphorylated Molecules. Chemical Reviews, 2011, 111, 6603-6782.	47.7	571
45	Algorithms for the determination of binding constants and enantiomeric excess in complex host : guest equilibria using optical measurements. New Journal of Chemistry, 2010, 34, 348.	2.8	110
46	Boronic Acid Porphyrin Receptor for Ginsenoside Sensing. Organic Letters, 2010, 12, 4804-4807.	4.6	44
47	Probing Intramolecular Bâ^'N Interactions in <i>Ortho</i> -Aminomethyl Arylboronic Acids. Journal of Organic Chemistry, 2009, 74, 4055-4060.	3.2	95
48	Porphyrenediynes: synthesis and cyclization of meso-enediynylporphyrins. Tetrahedron Letters, 2007, 48, 725-728.	1.4	17
49	Sequencing and characterization of oligosaccharides using infrared multiphoton dissociation and boronic acid derivatization in a quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 2007, 18, 2094-2106.	2.8	28
50	Chemical and electrochemical oxidation of N-alkyl cyclo[n]pyrroles. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1329-1336.	0.8	8