Bo N J Persson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7916206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Stability of Spinning Asteroids. Tribology Letters, 2022, 70, 1.	2.6	14
2	Air, Helium and Water Leakage in Rubber O-ring Seals with Application to Syringes. Tribology Letters, 2022, 70, 1.	2.6	6
3	Fluid Leakage in Static Rubber Seals. Tribology Letters, 2022, 70, 1.	2.6	9
4	Air leakage in seals with application to syringes. Applied Surface Science Advances, 2022, 8, 100222.	6.8	1
5	Dependency of sliding friction for two-dimensional systems on electronegativity. Physical Review B, 2022, 105, .	3.2	3
6	Comments on the Theory of Fluid Flow Between Solids with Anisotropic Roughness. Tribology Letters, 2021, 69, 1.	2.6	5
7	Cylinder-Flat Contact Mechanics with Surface Roughness. Tribology Letters, 2021, 69, 1.	2.6	8
8	A simple model for viscoelastic crack propagation. European Physical Journal E, 2021, 44, 3.	1.6	13
9	Rubber Wear and the Role of Transfer Films on Rubber Friction on Hard Rough Substrates. Tribology Letters, 2021, 69, 1.	2.6	6
10	Rubber Adhesion and Friction: Role of Surface Energy and Contamination Films. Frontiers in Mechanical Engineering, 2021, 6, .	1.8	8
11	Side-leakage of face mask. European Physical Journal E, 2021, 44, 75.	1.6	5
12	General theory of electroadhesion. Journal of Physics Condensed Matter, 2021, 33, 435001.	1.8	6
13	On Opening Crack Propagation in Viscoelastic Solids. Tribology Letters, 2021, 69, 1.	2.6	12
14	Conveyor Belt Drive Physics. Tribology Letters, 2020, 68, 1.	2.6	9
15	Fluid Leakage in Metallic Seals. Tribology Letters, 2020, 68, 1.	2.6	19
16	Plastic Deformation of Rough Metallic Surfaces. Tribology Letters, 2020, 68, 1.	2.6	24
17	Interfacial fluid flow for systems with anisotropic roughness. European Physical Journal E, 2020, 43, 25.	1.6	10
18	Sphere and cylinder contact mechanics during slip. Journal of the Mechanics and Physics of Solids, 2020, 143, 104094.	4.8	13

#	Article	IF	CITATIONS
19	Adhesion paradox: Why adhesion is usually not observed for macroscopic solids. Physical Review E, 2020, 102, 042803.	2.1	26
20	Cylinder–flat-surface contact mechanics during sliding. Physical Review E, 2020, 102, 043002.	2.1	3
21	Lubricated sliding friction: Role of interfacial fluid slip and surface roughness. European Physical Journal E, 2020, 43, 9.	1.6	8
22	Comment on "On the Origin of Frictional Energy Dissipation― Tribology Letters, 2020, 68, 1.	2.6	3
23	Viscoelastic Crack Propagation: Review of Theories and Applications. Advances in Polymer Science, 2020, , 377-420.	0.8	9
24	Electric field effect in heat transfer in 2D devices. Journal of Physics Condensed Matter, 2020, 32, 255301.	1.8	9
25	Contact Mechanics for Solids with Randomly Rough Surfaces and Plasticity. Lubricants, 2019, 7, 90.	2.9	9
26	Electroadhesion with application to touchscreens. Soft Matter, 2019, 15, 1758-1775.	2.7	29
27	Adhesion and Friction for Three Tire Tread Compounds. Lubricants, 2019, 7, 20.	2.9	29
28	Linear and Nonlinear Viscoelastic Modulus of Rubber. Lubricants, 2019, 7, 22.	2.9	14
29	Surface topography and water contact angle of sandblasted and thermally annealed glass surfaces. Journal of Chemical Physics, 2019, 150, 054701.	3.0	4
30	Electroadhesion for soft adhesive pads and robotics: theory and numerical results. Soft Matter, 2019, 15, 8032-8039.	2.7	12
31	Physics of suction cups. Soft Matter, 2019, 15, 9482-9499.	2.7	33
32	Rolling friction of elastomers: role of strain softening. Soft Matter, 2019, 15, 9233-9243.	2.7	5
33	The dependency of adhesion and friction on electrostatic attraction. Journal of Chemical Physics, 2018, 148, 144701.	3.0	34
34	Adhesion, friction and viscoelastic properties for non-aged and aged Styrene Butadiene rubber. Tribology International, 2018, 121, 78-83.	5.9	13
35	Some Comments on Hydrogel and Cartilage Contact Mechanics and Friction. Tribology Letters, 2018, 66, 1.	2.6	13
36	On the load dependence of friction: Role of the long-range elastic coupling. Tribology International, 2018, 123, 209-215.	5.9	4

#	Article	IF	CITATIONS
37	Contact mechanics for polydimethylsiloxane: from liquid to solid. Soft Matter, 2018, 14, 1142-1148.	2.7	11
38	Influence of anisotropic surface roughness on lubricated rubber friction: Extended theory and an application to hydraulic seals. Wear, 2018, 410-411, 43-62.	3.1	25
39	Contact mechanics between the human finger and a touchscreen under electroadhesion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12668-12673.	7.1	64
40	Ice friction: Glacier sliding on hard randomly rough bed surface. Journal of Chemical Physics, 2018, 149, 234701.	3.0	9
41	On the Use of Silicon Rubber Replica for Surface Topography Studies. Tribology Letters, 2018, 66, 1.	2.6	13
42	Atomistic modeling of tribological properties of Pd and Al nanoparticles on a graphene surface. Beilstein Journal of Nanotechnology, 2018, 9, 1239-1246.	2.8	7
43	Elastic Contact Mechanics of Randomly Rough Surfaces: An Assessment of Advanced Asperity Models and Persson's Theory. Tribology Letters, 2018, 66, 1.	2.6	68
44	Adhesion between rubber and glass in dry and lubricated condition. Journal of Chemical Physics, 2018, 148, 234702.	3.0	14
45	Rubber friction: The contribution from the area of real contact. Journal of Chemical Physics, 2018, 148, 224701.	3.0	31
46	Adhesion and friction between glass and rubber in the dry state and in water: role of contact hydrophobicity. Soft Matter, 2018, 14, 5428-5441.	2.7	13
47	Interfacial leakage of elastomer seals at low temperatures. International Journal of Pressure Vessels and Piping, 2018, 160, 14-23.	2.6	23
48	The effect of surface roughness and viscoelasticity on rubber adhesion. Soft Matter, 2017, 13, 3602-3621.	2.7	89
49	Elastohydrodynamics for Soft Solids with Surface Roughness: Transient Effects. Tribology Letters, 2017, 65, 1.	2.6	4
50	Meeting the Contact-Mechanics Challenge. Tribology Letters, 2017, 65, 1.	2.6	232
51	Crack propagation in finite-sized viscoelastic solids with application to adhesion. Europhysics Letters, 2017, 119, 18002.	2.0	23
52	Simple contact mechanics model of the vertebrate cartilage. Soft Matter, 2017, 13, 6349-6362.	2.7	5
53	Rubber contact mechanics: adhesion, friction and leakage of seals. Soft Matter, 2017, 13, 9103-9121.	2.7	47
54	Role of Preload in Adhesion of Rough Surfaces. Physical Review Letters, 2017, 118, 238001.	7.8	36

#	Article	IF	CITATIONS
55	Dependency of Rubber Friction on Normal Force or Load: Theory and Experiment. Tire Science and Technology, 2017, 45, 25-54.	0.4	21
56	Fundamentals of Adhesion. , 2016, , .		1
57	Soft matter dynamics: Accelerated fluid squeeze-out during slip. Journal of Chemical Physics, 2016, 144, 124903.	3.0	18
58	Rubber friction directional asymmetry. Europhysics Letters, 2016, 116, 66002.	2.0	8
59	Contact mechanics for poroelastic, fluid-filled media, with application to cartilage. Journal of Chemical Physics, 2016, 145, 234703.	3.0	7
60	Silicone Rubber Adhesion and Sliding Friction. Tribology Letters, 2016, 62, 1.	2.6	19
61	The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity. Nanotechnology, 2016, 27, 445401.	2.6	8
62	Leakage of Metallic Seals: Role of Plastic Deformations. Tribology Letters, 2016, 63, 1.	2.6	25
63	Multiscale Contact Mechanics with Application to Seals and Rubber Friction on Dry and Lubricated Surfaces. Advances in Polymer Science, 2016, , 103-156.	0.8	11
64	Quantum Vavilov-Cherenkov radiation from shearing two transparent dielectric plates. Physical Review B, 2016, 93, .	3.2	3
65	The effect of finite roughness size and bulk thickness on the prediction of rubber friction and contact mechanics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 1398-1409.	2.1	8
66	Rubber Friction on Ice: Experiments and Modeling. Tribology Letters, 2016, 62, 1.	2.6	40
67	On the dependency of friction on load: Theory and experiment. Europhysics Letters, 2016, 113, 56002.	2.0	17
68	Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion. Tribology Letters, 2016, 62, 1.	2.6	6
69	General contact mechanics theory for randomly rough surfaces with application to rubber friction. Journal of Chemical Physics, 2015, 143, 224111.	3.0	28
70	Fluid contact angle on solid surfaces: Role of multiscale surface roughness. Journal of Chemical Physics, 2015, 143, 134705.	3.0	27
71	General theory of frictional heating with application to rubber friction. Journal of Physics Condensed Matter, 2015, 27, 175008.	1.8	21
72	lce friction: Role of non-uniform frictional heating and ice premelting. Journal of Chemical Physics, 2015, 143, 224701.	3.0	42

#	Article	IF	CITATIONS
73	Author Response to the Comment by Popov on "Contact Mechanics for Randomly Rough Surfaces: On the Validity of the Method of Reduction of Dimensionality― Tribology Letters, 2015, 60, 1.	2.6	2
74	Friction and universal contact area law for randomly rough viscoelastic contacts. Journal of Physics Condensed Matter, 2015, 27, 105102.	1.8	44
75	Contact Mechanics for Randomly Rough Surfaces: On the Validity of the Method of Reduction of Dimensionality. Tribology Letters, 2015, 58, 1.	2.6	10
76	Rubber friction on road surfaces: Experiment and theory for low sliding speeds. Journal of Chemical Physics, 2015, 142, 194701.	3.0	94
77	Surface topography and contact mechanics of dry and wet human skin. Beilstein Journal of Nanotechnology, 2014, 5, 1341-1348.	2.8	36
78	Tire–Road Contact Stiffness. Tribology Letters, 2014, 56, 397-402.	2.6	30
79	Role of Frictional Heating in Rubber Friction. Tribology Letters, 2014, 56, 77-92.	2.6	24
80	Comment on â€~Fully covariant radiation force on a polarizable particle'. New Journal of Physics, 2014, 16, 118001.	2.9	12
81	Thermal interface resistance: cross-over from nanoscale to macroscale. Journal of Physics Condensed Matter, 2014, 26, 015009.	1.8	8
82	Theory of adhesion: Role of surface roughness. Journal of Chemical Physics, 2014, 141, 124701.	3.0	162
83	On the Fractal Dimension of Rough Surfaces. Tribology Letters, 2014, 54, 99-106.	2.6	229
84	Rolling Friction: Comparison of Analytical Theory with Exact Numerical Results. Tribology Letters, 2014, 55, 15-21.	2.6	20
85	Role of hydrophobicity on interfacial fluid flow: Theory and some applications. European Physical Journal E, 2014, 37, 12.	1.6	17
86	Theory of viscoelastic lubrication. Tribology International, 2014, 72, 118-130.	5.9	53
87	Master curve of viscoelastic solid: Using causality to determine the optimal shifting procedure, and to test the accuracy of measured data. Polymer, 2014, 55, 565-571.	3.8	46
88	Finite-size scaling in the interfacial stiffness of rough elastic contacts. Physical Review E, 2013, 87, 062809.	2.1	87
89	Contact Mechanics and Friction on Dry and Wet Human Skin. Tribology Letters, 2013, 50, 17-30.	2.6	56
90	Comment on "Friction Between a Viscoelastic Body and a Rigid Surface with Random Self-Affine Roughness― Physical Review Letters, 2013, 111, 189401.	7.8	13

#	Article	IF	CITATIONS
91	On the Validity of the Method of Reduction of Dimensionality: Area of Contact, Average Interfacial Separation and Contact Stiffness. Tribology Letters, 2013, 52, 223-229.	2.6	13
92	Adhesion of cellulose fibers in paper. Journal of Physics Condensed Matter, 2013, 25, 045002.	1.8	42
93	Rubber friction for tire tread compound on road surfaces. Journal of Physics Condensed Matter, 2013, 25, 095007.	1.8	46
94	Adhesion: role of bulk viscoelasticity and surface roughness. Journal of Physics Condensed Matter, 2013, 25, 225004.	1.8	49
95	Contact electrification and the work of adhesion. Europhysics Letters, 2013, 103, 36003.	2.0	15
96	Static or breakloose friction for lubricated contacts: the role of surface roughness and dewetting. Journal of Physics Condensed Matter, 2013, 25, 445013.	1.8	29
97	On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. Journal of Physics Condensed Matter, 2012, 24, 225008.	1.8	20
98	Self-Affine Elastic Contacts: Percolation and Leakage. Physical Review Letters, 2012, 108, 244301.	7.8	138
99	Time-Dependent Fluid Squeeze-Out Between Soft Elastic Solids with Randomly Rough Surfaces. Tribology Letters, 2012, 47, 409-416.	2.6	24
100	Effective Viscosity of Confined Hydrocarbons. Physical Review Letters, 2012, 108, 036102.	7.8	44
101	Contact mechanics for layered materials with randomly rough surfaces. Journal of Physics Condensed Matter, 2012, 24, 095008.	1.8	25
102	Elastic contact mechanics: Percolation of the contact area and fluid squeeze-out. European Physical Journal E, 2012, 35, 5.	1.6	49
103	Reply to the "Discussion of the Paper by Krick et al.: Optical In Situ Micro Tribometer for Analysis of Real Contact Area for Contact Mechanics, Adhesion, and Sliding Experiments― Tribology Letters, 2012, 46, 207-209.	2.6	2
104	Optical In Situ Micro Tribometer for Analysis of Real Contact Area for Contact Mechanics, Adhesion, and Sliding Experiments. Tribology Letters, 2012, 45, 185-194.	2.6	170
105	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory. Soft Matter, 2011, 7, 10395.	2.7	61
106	Phononic heat transfer across an interface: thermal boundary resistance. Journal of Physics Condensed Matter, 2011, 23, 045009.	1.8	59
107	Quantum Friction. Physical Review Letters, 2011, 106, 094502.	7.8	104
108	Transverse and normal interfacial stiffness of solids with randomly rough surfaces. Journal of Physics Condensed Matter, 2011, 23, 085001.	1.8	115

#	Article	IF	CITATIONS
109	Near-field radiative heat transfer and van der Waals friction between closely spaced graphene and amorphous SiO ₂ . Journal of Physics: Conference Series, 2011, 291, 012018.	0.4	2
110	Interfacial separation between elastic solids with randomly rough surfaces: Comparison between theory and numerical techniques. Journal of the Mechanics and Physics of Solids, 2011, 59, 2355-2369.	4.8	126
111	Lubricated sliding dynamics: Flow factors and Stribeck curve. European Physical Journal E, 2011, 34, 113.	1.6	37
112	Rubber friction: Comparison of theory with experiment. European Physical Journal E, 2011, 34, 1-11.	1.6	75
113	Comment on â€~No quantum friction between uniformly moving plates'. New Journal of Physics, 2011, 13, 068001.	2.9	19
114	Fluid squeeze-out between rough surfaces: comparison of theory with experiment. Journal of Physics Condensed Matter, 2011, 23, 355005.	1.8	10
115	Adhesion between elastic solids with randomly rough surfaces: Comparison of analytical theory with molecular-dynamics simulations. Europhysics Letters, 2011, 96, 66003.	2.0	38
116	Near-field radiative heat transfer between closely spaced graphene and amorphous SiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow>. Physical</mml:math 	3.2	67
117	Review B, 2011, 83, . Rubber friction and tire dynamics. Journal of Physics Condensed Matter, 2011, 23, 015003.	1.8	49
118	Heat transfer between elastic solids with randomly rough surfaces. European Physical Journal E, 2010, 31, 3-24.	1.6	78
119	Leak rate of seals: Effective-medium theory and comparison with experiment. European Physical Journal E, 2010, 31, 159-167.	1.6	100
120	Time-dependent fluid squeeze-out between solids with rough surfaces. European Physical Journal E, 2010, 32, 281-290.	1.6	33
121	Rolling friction for hard cylinder and sphere on viscoelastic solid. European Physical Journal E, 2010, 33, 327-333.	1.6	74
122	Heat transfer between graphene and amorphous SiO ₂ . Journal of Physics Condensed Matter, 2010, 22, 462201.	1.8	39
123	Lateral hopping of CO on Cu(111) induced by femtosecond laser pulses. Physical Review B, 2010, 82, .	3.2	3
124	Comment on "Diffusion and Dimer Formation of CO Molecules Induced by Femtosecond Laser Pulses― Physical Review Letters, 2010, 104, 239601.	7.8	0
125	Surface roughness of peeled adhesive tape: A mystery?. Europhysics Letters, 2010, 92, 46001.	2.0	25
126	Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces. Journal of Physics Condensed Matter, 2010, 22, 265004.	1.8	39

#	Article	IF	CITATIONS
127	Heat transfer between weakly coupled systems: Graphene on a-SiO ₂ . Europhysics Letters, 2010, 91, 56001.	2.0	39
128	On the dependence of the leak rate of seals on the skewness of the surface height probability distribution. Europhysics Letters, 2010, 90, 38002.	2.0	20
129	Velocity Dependence of Friction of Confined Hydrocarbons. Langmuir, 2010, 26, 8721-8728.	3.5	35
130	Surface-roughness–induced electric-field enhancement and triboluminescence. Europhysics Letters, 2010, 91, 46003.	2.0	27
131	Lateral hopping of CO molecules on Pt(111) surface by femtosecond laser pulses. Physical Review B, 2009, 80, .	3.2	6
132	Numerical and Experimental Investigation on O-Ring-Seals in Dynamic Applications. International Journal of Fluid Power, 2009, 10, 51-59.	0.7	11
133	Leak rate of seals: Comparison of theory with experiment. Europhysics Letters, 2009, 86, 44006.	2.0	70
134	On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts. Journal of Physics Condensed Matter, 2009, 21, 185002.	1.8	53
135	Theory of powdery rubber wear. Journal of Physics Condensed Matter, 2009, 21, 485001.	1.8	26
136	Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. Journal of Physics Condensed Matter, 2009, 21, 015003.	1.8	40
137	Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. European Physical Journal E, 2009, 29, 275-284.	1.6	131
138	Influence of frozen capillary waves on contact mechanics. Wear, 2008, 264, 746-749.	3.1	11
139	Nanodroplets on rough hydrophilic and hydrophobic surfaces. European Physical Journal E, 2008, 25, 139-152.	1.6	56
140	Frictional properties of confined polymers. European Physical Journal E, 2008, 27, 37-46.	1.6	33
141	On Pattern Transfer in Replica Molding. Langmuir, 2008, 24, 6636-6639.	3.5	30
142	Theory of the interaction forces and the radiative heat transfer between moving bodies. Physical Review B, 2008, 78, .	3.2	79
143	On the origin of Amonton's friction law. Journal of Physics Condensed Matter, 2008, 20, 395006. 	1.8	59
144	Contact mechanics: contact area and interfacial separation from small contact to full contact. Journal of Physics Condensed Matter, 2008, 20, 215214.	1.8	152

#	Article	IF	CITATIONS
145	Rubber friction on (apparently) smooth lubricated surfaces. Journal of Physics Condensed Matter, 2008, 20, 085223.	1.8	30
146	Capillary adhesion between elastic solids with randomly rough surfaces. Journal of Physics Condensed Matter, 2008, 20, 315007.	1.8	71
147	On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. Journal of Physics Condensed Matter, 2008, 20, 312001.	1.8	58
148	Heat transfer between adsorbate and laser-heated hot electrons. Journal of Physics Condensed Matter, 2008, 20, 224016.	1.8	8
149	Contact mechanics with adhesion: Interfacial separation and contact area. Europhysics Letters, 2008, 84, 46004.	2.0	28
150	Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses. Physical Review B, 2008, 78, .	3.2	9
151	Molecular Dynamics Study of Contact Mechanics: Contact Area and Interfacial Separation from Small to Full Contact. Physical Review Letters, 2008, 100, 024303.	7.8	69
152	Theory of the leak-rate of seals. Journal of Physics Condensed Matter, 2008, 20, 315011.	1.8	117
153	van der Waals frictional drag induced by liquid flow in low-dimensional systems. Physical Review B, 2008, 77, .	3.2	5
154	Heating of adsorbate by vibrational-mode coupling. Physical Review B, 2008, 77, .	3.2	19
155	Title is missing!. Physics-Uspekhi, 2007, 50, 879.	2.2	30
156	Heat transfer at surfaces exposed to short-pulsed laser fields. Physical Review B, 2007, 76, .	3.2	16
157	Effect of Surface Roughness and Adsorbates on Superlubricity. , 2007, , 131-146.		2
158	Action spectroscopy for single-molecule motion induced by vibrational excitation with a scanning tunneling microscope. Physical Review B, 2007, 75, .	3.2	34
159	Vibrational heating of molecules adsorbed on insulating surfaces using localized photon tunneling. Physical Review B, 2007, 75, .	3.2	5
160	Biological Adhesion for Locomotion on Rough Surfaces: Basic Principles and A Theorist's View. MRS Bulletin, 2007, 32, 486-490.	3.5	54
161	Wet adhesion with application to tree frog adhesive toe pads and tires. Journal of Physics Condensed Matter, 2007, 19, 376110.	1.8	124
162	Near-field radiative heat transfer and noncontact friction. Reviews of Modern Physics, 2007, 79, 1291-1329.	45.6	613

#	Article	IF	CITATIONS
163	Biological adhesion for locomotion: basic principles. Journal of Adhesion Science and Technology, 2007, 21, 1145-1173.	2.6	62
164	Relation between Interfacial Separation and Load: A General Theory of Contact Mechanics. Physical Review Letters, 2007, 99, 125502.	7.8	213
165	Giant enhancement of noncontact friction between closely spaced bodies by dielectric films and two-dimensional systems. Journal of Experimental and Theoretical Physics, 2007, 104, 96-110.	0.9	15
166	Contact Mechanics, Friction and Adhesion with Application to Quasicrystals. Nanoscience and Technology, 2007, , 269-306.	1.5	2
167	Theory of Noncontact Friction. Nanoscience and Technology, 2007, , 393-438.	1.5	0
168	A Multiscale Molecular Dynamics Approach to Contact Mechanics and Friction: From Continuum Mechanics to Molecular Dynamics. Nanoscience and Technology, 2007, , 307-343.	1.5	1
169	A multiscale molecular dynamics approach to contact mechanics. European Physical Journal E, 2006, 19, 47-58.	1.6	103
170	Influence of Surface Roughness on Superhydrophobicity. Physical Review Letters, 2006, 97, 116103.	7.8	285
171	Contact mechanics for randomly rough surfaces. Surface Science Reports, 2006, 61, 201-227.	7.2	582
172	Rubber friction on smooth surfaces. European Physical Journal E, 2006, 21, 69-80.	1.6	95
173	Role of surface roughness in superlubricity. Journal of Physics Condensed Matter, 2006, 18, 4143-4160.	1.8	25
174	How do liquids confined at the nanoscale influence adhesion?. Journal of Physics Condensed Matter, 2006, 18, 11521-11530.	1.8	7
175	Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity. Journal of Chemical Physics, 2006, 125, 014704.	3.0	33
176	Rubber friction: role of the flash temperature. Journal of Physics Condensed Matter, 2006, 18, 7789-7823.	1.8	151
177	Chemical Contribution to Surface-Enhanced Raman Scattering. Physical Review Letters, 2006, 96, 207401.	7.8	181
178	Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems. Physical Review B, 2006, 73, .	3.2	30
179	Persson, Zhao, and Zhang Reply:. Physical Review Letters, 2006, 97, .	7.8	2
180	Quantum field theory of van der Waals friction. Physical Review B, 2006, 74, .	3.2	31

#	Article	IF	CITATIONS
181	Adsorbate vibrational mode enhancement of radiative heat transfer and van der Waals friction. Surface Science, 2005, 587, 88-101.	1.9	4
182	Crack motion in viscoelastic solids: The role of the flash temperature. European Physical Journal E, 2005, 17, 261-281.	1.6	59
183	Rubber friction on wet and dry road surfaces: The sealing effect. Physical Review B, 2005, 71, .	3.2	92
184	Adsorbate motions induced by inelastic-tunneling current: Theoretical scenarios of two-electron processes. Journal of Chemical Physics, 2005, 123, 084707.	3.0	45
185	Adsorbate-Induced Enhancement of Electrostatic Noncontact Friction. Physical Review Letters, 2005, 94, 086104.	7.8	54
186	Influence of Surface Roughness on Adhesion between Elastic Bodies. Physical Review Letters, 2005, 95, 124301.	7.8	112
187	Crack propagation in viscoelastic solids. Physical Review E, 2005, 71, 036123.	2.1	214
188	Hot Cracks in Rubber: Origin of the Giant Toughness of Rubberlike Materials. Physical Review Letters, 2005, 95, 114301.	7.8	45
189	On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal of Physics Condensed Matter, 2005, 17, R1-R62.	1.8	748
190	Crack propagation in rubber-like materials. Journal of Physics Condensed Matter, 2005, 17, R1071-R1142.	1.8	205
191	Contact area between a viscoelastic solid and a hard, randomly rough, substrate. Journal of Chemical Physics, 2004, 120, 8779-8793.	3.0	122
192	Squeezing wetting and nonwetting liquids. Journal of Chemical Physics, 2004, 120, 1997-2004.	3.0	8
193	The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant. Journal of Chemical Physics, 2004, 121, 9639-9647.	3.0	19
194	Dewetting at soft viscoelastic interfaces. Journal of Chemical Physics, 2004, 121, 2246-2252.	3.0	23
195	Adhesion between a thin elastic plate and a hard randomly rough substrate. Physical Review B, 2004, 70, .	3.2	55
196	Squeeze-out and wear: fundamental principles and applications. Journal of Physics Condensed Matter, 2004, 16, R295-R355.	1.8	73
197	Sealing is at the origin of rubber slipping on wet roads. Nature Materials, 2004, 3, 882-885.	27.5	37
198	Squeezing Molecularly Thin Alkane Lubrication Films: Layering Transitions and Wear. Tribology Letters, 2004, 16, 195-200.	2.6	5

#	Article	IF	CITATIONS
199	Theoretical state-of-the art in adsorbate motions and reactions induced by inelastic tunneling current with STM. Surface Science, 2004, 566-568, 1-12.	1.9	27
200	Electronic friction and liquid-flow-induced voltage in nanotubes. Physical Review B, 2004, 69, .	3.2	90
201	Resonant photon tunneling enhancement of the radiative heat transfer. Physical Review B, 2004, 69, .	3.2	137
202	Role of the external pressure on the dewetting of soft interfaces. European Physical Journal E, 2003, 11, 409-413.	1.6	29
203	On the nature of the static friction, kinetic friction and creep. Wear, 2003, 254, 835-851.	3.1	117
204	Adsorbate vibrational mode enhancement of radiative heat transfer. JETP Letters, 2003, 78, 457-460.	1.4	15
205	Nanoadhesion. Wear, 2003, 254, 832-834.	3.1	48
206	The effect of surface roughness on the adhesion of elastic plates with application to biological systems. Journal of Chemical Physics, 2003, 119, 11437-11444.	3.0	370
207	Noncontact friction between nanostructures. Physical Review B, 2003, 68, .	3.2	69
208	On the mechanism of adhesion in biological systems. Journal of Chemical Physics, 2003, 118, 7614.	3.0	323
209	Dynamics of squeeze-out: Theory and experiments. Journal of Chemical Physics, 2003, 118, 11160-11167.	3.0	12
210	Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear. Journal of Chemical Physics, 2003, 119, 2314-2321.	3.0	40
211	Nanoadhesion of elastic bodies: Roughness and temperature effects. Journal of Chemical Physics, 2003, 118, 6473-6480.	3.0	23
212	Resonant Photon Tunneling Enhancement of the van der Waals Friction. Physical Review Letters, 2003, 91, 106101.	7.8	72
213	Dimethyl Ether: New Advances in Wear Testing: Theoretical and Experimental Results. , 2003, , .		1
214	Persson Replies:. Physical Review Letters, 2002, 88, .	7.8	0
215	Phenomenology of squeezing and sliding of molecularly thin Xe, CH4 and C16H34 lubrication films between smooth and rough curved solid surfaces with long-range elasticity. Journal of Chemical Physics, 2002, 117, 3897-3914.	3.0	25
216	Theory of rubber friction:â€,â€,Nonstationary sliding. Physical Review B, 2002, 65, .	3.2	28

#	Article	IF	CITATIONS
217	Adhesion between Elastic Bodies with Randomly Rough Surfaces. Physical Review Letters, 2002, 89, 245502.	7.8	98
218	Comment on "Nanoadhesion between Rough Surfaces― Physical Review Letters, 2002, 88, 129601.	7.8	3
219	Boundary lubrication: Squeeze-out dynamics of a compressible two-dimensional liquid. Physical Review B, 2002, 66, .	3.2	5
220	Dissipative van der Waals interaction between a small particle and a metal surface. Physical Review B, 2002, 65, .	3.2	72
221	Elastic contact between randomly rough surfaces: Comparison of theory with numerical results. Physical Review B, 2002, 65, .	3.2	185
222	Theory of inelastic tunneling induced motion of adsorbates on metal surfaces. Surface Science, 2002, 502-503, 18-25.	1.9	58
223	Lateral Hopping of Molecules Induced by Excitation of Internal Vibration Mode. Science, 2002, 295, 2055-2058.	12.6	337
224	Adhesion between elastic bodies with rough surfaces. Solid State Communications, 2002, 123, 173-177.	1.9	39
225	Adhesion between an elastic body and a randomly rough hard surface. European Physical Journal E, 2002, 8, 385-401.	1.6	193
226	The frictional drag force between quantum wells mediated by a fluctuating electromagnetic field. Journal of Physics Condensed Matter, 2001, 13, 859-873.	1.8	28
227	Theory and simulations of squeeze-out dynamics in boundary lubrication. Journal of Chemical Physics, 2001, 115, 11268-11277.	3.0	10
228	The effect of surface roughness on the adhesion of elastic solids. Journal of Chemical Physics, 2001, 115, 5597-5610.	3.0	265
229	Elastic instabilities at a sliding interface. Physical Review B, 2001, 63, .	3.2	17
230	Theory of rubber friction and contact mechanics. Journal of Chemical Physics, 2001, 115, 3840-3861.	3.0	1,169
231	Radiative heat transfer between nanostructures. Physical Review B, 2001, 63, .	3.2	244
232	Elastoplastic Contact between Randomly Rough Surfaces. Physical Review Letters, 2001, 87, 116101.	7.8	304
233	Boundary lubrication: â€,Dynamics of squeeze-out. Physical Review E, 2001, 63, 055103.	2.1	21
234	Thermodynamics and Kinetics of Shear Induced Melting of a thin Lubrication film Trapped between Solids. Materials Research Society Symposia Proceedings, 2000, 651, 1.	0.1	1

#	Article	IF	CITATIONS
235	Layering transition: dynamical instabilities during squeeze-out. Chemical Physics Letters, 2000, 324, 231-239.	2.6	12
236	On the origin of the transition from slip to stick. Solid State Communications, 2000, 114, 261-266.	1.9	17
237	Electronic friction on a superconductor surface. Solid State Communications, 2000, 115, 145-148.	1.9	21
238	Boundary lubrication: layering transition for curved solid surfaces with long-range elasticity. Solid State Communications, 2000, 115, 599-604.	1.9	11
239	Qualitative theory of rubber friction and wear. Journal of Chemical Physics, 2000, 112, 2021-2029.	3.0	52
240	Femtosecond Surface Vibrational Spectroscopy of CO Adsorbed on Ru(001) during Desorption. Physical Review Letters, 2000, 84, 4653-4656.	7.8	175
241	Comment on "Brownian Motion of Microscopic Solids under the Action of Fluctuating Electromagnetic Fields― Physical Review Letters, 2000, 84, 3504-3504.	7.8	43
242	Squeezing lubrication films: Layering transition for curved solid surfaces with long-range elasticity. Journal of Chemical Physics, 2000, 112, 9524-9542.	3.0	46
243	Sliding Friction. Nanoscience and Technology, 2000, , .	1.5	701
244	Dynamical interactions in sliding friction. Surface Science, 2000, 457, 345-356.	1.9	9
245	Friction dynamics for curved solid surfaces with long-range elasticity. Journal of Chemical Physics, 2000, 113, 5477.	3.0	9
246	Theory of time-dependent plastic deformation in disordered solids. Physical Review B, 2000, 61, 5949-5966.	3.2	29
247	Lubricated Friction Dynamics. Nanoscience and Technology, 2000, , 395-413.	1.5	1
248	Area of Real Contact: Elastic and Plastic Deformations. Nanoscience and Technology, 2000, , 45-91.	1.5	6
249	Sliding on Lubricated Surfaces. Nanoscience and Technology, 2000, , 101-170.	1.5	5
250	Boundary Lubrication. Nanoscience and Technology, 2000, , 313-334.	1.5	1
251	Sliding of Adsorbate Layers. Nanoscience and Technology, 2000, , 171-311.	1.5	0
252	Novel Sliding Systems. Nanoscience and Technology, 2000, , 435-496.	1.5	0

#	Article	IF	CITATIONS
253	Elastic Interactions and Instability Transitions. Nanoscience and Technology, 2000, , 335-362.	1.5	0
254	Modern Experimental Methods and Results. Nanoscience and Technology, 2000, , 17-36.	1.5	0
255	Low-frequency adsorbate vibrational relaxation and sliding friction. Physical Review B, 1999, 59, 11777-11791.	3.2	60
256	Theory of friction: elastic coherence length and earthquake dynamics. Solid State Communications, 1999, 109, 739-744.	1.9	35
257	Sliding friction. Surface Science Reports, 1999, 33, 83-119.	7.2	144
258	Theory of friction: the contribution from a fluctuating electromagnetic field. Journal of Physics Condensed Matter, 1999, 11, 345-359.	1.8	93
259	Fracture of polymers. Journal of Chemical Physics, 1999, 110, 9713-9724.	3.0	20
260	Friction of molecules at metallic surfaces: experimental approach using synchrotron infrared spectroscopy. Surface Science, 1999, 433-435, 797-805.	1.9	18
261	Adsorption of potassium and oxygen on graphite: A theoretical study. Journal of Chemical Physics, 1998, 108, 3332-3341.	3.0	127
262	On the theory of rubber friction. Surface Science, 1998, 401, 445-454.	1.9	214
263	The puzzling collapse of electronic sliding friction on a superconductor surface. Surface Science, 1998, 411, L855-L857.	1.9	25
264	Infrared spectroscopy of overtones and combination bands. Journal of Chemical Physics, 1998, 109, 8641-8651.	3.0	73
265	On the role of inertia and temperature in continuum and atomistic models of brittle fracture. Journal of Physics Condensed Matter, 1998, 10, 10529-10538.	1.8	6
266	Theory of friction: Coulomb drag between two closely spaced solids. Physical Review B, 1998, 57, 7327-7334.	3.2	52
267	Model Study of Brittle Fracture of Polymers. Physical Review Letters, 1998, 81, 3439-3442.	7.8	15
268	Sliding Friction. Nanoscience and Technology, 1998, , .	1.5	440
269	Novel Sliding Systems. Nanoscience and Technology, 1998, , 387-444.	1.5	1
270	Sliding on Lubricated Surfaces. Nanoscience and Technology, 1998, , 97-154.	1.5	2

#	Article	IF	CITATIONS
271	Sliding of Adsorbate Layers. Nanoscience and Technology, 1998, , 155-268.	1.5	Ο
272	Modern Experimental Methods and Results. Nanoscience and Technology, 1998, , 17-35.	1.5	0
273	Lubricated Friction Dynamics. Nanoscience and Technology, 1998, , 347-365.	1.5	0
274	Elastic Interactions and Instability Transitions. Nanoscience and Technology, 1998, , 289-313.	1.5	0
275	Boundary Lubrication. Nanoscience and Technology, 1998, , 269-288.	1.5	0
276	Sliding friction: the contribution from defects. Journal of Physics Condensed Matter, 1997, 9, 2869-2889.	1.8	10
277	Probing the Surface Brillouin Zone by Infrared Absorption Spectroscopy: Asymmetric Line Shape of Vibrational Combination Band. Physical Review Letters, 1997, 78, 3503-3506.	7.8	21
278	Theory of friction:mFriction dynamics for boundary lubricated surfaces. Physical Review B, 1997, 55, 8004-8004.	3.2	35
279	Dephasing of localized and delocalized vibrational modes: CO adsorbed on Ru(001). Physical Review B, 1997, 56, 10644-10650.	3.2	60
280	Local bond breaking via STM-induced excitations: the role of temperature. Surface Science, 1997, 390, 45-54.	1.9	116
281	Theory of Friction: Friction Dynamics for Boundary Lubricated Surfaces. , 1997, , 555-577.		6
282	Linear sliding friction: on the origin of the microscopic friction for Xe on silver. Surface Science, 1996, 367, 261-275.	1.9	74
283	Theory of friction: on the origin of the stick-slip motion of lubricated surfaces. Chemical Physics Letters, 1996, 254, 114-121.	2.6	17
284	Theory of Friction: Elastic Coherence Length and Earthquake Dynamics. , 1996, , 179-189.		5
285	Sliding Friction of Lubricated Surfaces. , 1996, , 69-91.		3
286	Electronic and phononic friction. , 1996, , 253-264.		0
287	The effects of the electric field in the STM on excitation localization. Implications for local bond breaking. Chemical Physics Letters, 1995, 242, 483-489.	2.6	46
288	Dynamics of atomic adsorbates: hydrogen on Cu(111). Chemical Physics Letters, 1995, 243, 429-434.	2.6	50

#	Article	IF	CITATIONS
289	Electronic friction of physisorbed molecules. Journal of Chemical Physics, 1995, 103, 8679-8683.	3.0	78
290	Theory of friction: Dynamical phase transitions in adsorbed layers. Journal of Chemical Physics, 1995, 103, 3849-3860.	3.0	57
291	Quantum theory of infrared-reflection spectroscopy from adsorbate-covered metal surfaces in the anomalous-skin-effect frequency region. Physical Review B, 1995, 52, 2899-2906.	3.2	31
292	Theory of friction: Stress domains, relaxation, and creep. Physical Review B, 1995, 51, 13568-13585.	3.2	123
293	Theory of friction: The role of elasticity in boundary lubrication. Physical Review B, 1994, 50, 4771-4786.	3.2	100
294	Antiabsorption resonances in infrared reflectance spectroscopy of alkali-Cu(111) adsorbate systems: Is the ground state a surface charge density wave condensate?. Physical Review Letters, 1994, 72, 1256-1259.	7.8	24
295	Layering transition in confined molecular thin films: Nucleation and growth. Physical Review B, 1994, 50, 5590-5599.	3.2	99
296	Adsorbate vibrational dynamics in the anomalous skin effect frequency region. Surface Science, 1994, 317, L1141-L1146.	1.9	38
297	What can high-resolution electron energy loss spectroscopy tell about pre-melting of semiconductor surfaces at high temperatures?. Surface Science, 1994, 312, 198-200.	1.9	0
298	Infrared reflection-absorption spectroscopy of dipole-forbidden adsorbate vibrations. Surface Science, 1994, 310, 314-336.	1.9	83
299	High Temperature Surface Metallization of Ge(111) Detected by Electron Energy Loss Spectroscopy. Physical Review Letters, 1994, 73, 1951-1954.	7.8	57
300	FTIR overtone spectroscopy on surfaces. The C—O mode in chemisorbed methoxy on Ni(111). Chemical Physics Letters, 1993, 208, 414-419.	2.6	49
301	Infrared reflection-absorption spectroscopy of dipole forbidden adsorbate vibrations. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 23-38.	1.7	11
302	On the theory of friction and boundary lubrication. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 403-412.	1.7	7
303	Polarizability of small spherical metal particles: influence of the matrix environment. Surface Science, 1993, 281, 153-162.	1.9	296
304	Theory and simulation of sliding friction. Physical Review Letters, 1993, 71, 1212-1215.	7.8	114
305	Theory of friction and boundary lubrication. Physical Review B, 1993, 48, 18140-18158.	3.2	102
306	Applications of surface resistivity to atomic scale friction, to the migration of â€~ã€~hot'' adatoms, and to electrochemistry. Journal of Chemical Physics, 1993, 98, 1659-1672.	3.0	90

#	Article	IF	CITATIONS
307	Reply to â€~â€~Comment on â€~Surface resistivity and vibrational damping in adsorbed layers' ''. Phys Review B, 1993, 48, 15471-15471.	sical 3.2	9
308	Surface Resistivity and Atomic Scale Friction. , 1993, , 21-41.		0
309	Theory of photon emission in electron tunneling to metallic particles. Physical Review Letters, 1992, 68, 3224-3227.	7.8	191
310	Application of a boson Hubbard model to vibrational dynamics in adsorbate layers. Physical Review B, 1992, 46, 12701-12716.	3.2	31
311	Variation of the DC-resistance of smooth and atomically rough silver films during exposure to C2H6 and C2H4. Surface Science, 1992, 264, 327-340.	1.9	32
312	Surface resistivity: theory and applications. Surface Science, 1992, 269-270, 103-112.	1.9	53
313	Ordered structures and phase transitions in adsorbed layers. Surface Science Reports, 1992, 15, 1-135.	7.2	191
314	Adsorbate-induced surface resistivity and nonlocal optics. Chemical Physics Letters, 1992, 197, 7-11.	2.6	29
315	On the nature of adsorbate phase diagrams: beyond lattice gas models. Surface Science, 1991, 258, 451-463.	1.9	34
316	On the origin of anti-absorption resonances in adsorbate vibrational spectroscopy. Chemical Physics Letters, 1991, 185, 292-297.	2.6	37
317	Surface resistivity and vibrational damping in adsorbed layers. Chemical Physics Letters, 1991, 178, 204-212.	2.6	66
318	Cubic anharmonicity and multiphonon vibrational relaxation of absorbed molecules. Chemical Physics Letters, 1991, 184, 301-304.	2.6	4
319	Surface resistivity and vibrational damping in adsorbed layers. Physical Review B, 1991, 44, 3277-3296.	3.2	275
320	Vibrational dynamics at surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1990, 54-55, 81-101.	1.7	19
321	Dipole-coupling-induced line narrowing in adsorbate vibrational spectroscopy. Chemical Physics Letters, 1990, 174, 443-448.	2.6	35
322	Surface and superconducting properties of cleaved high-temperature superconductors. Physical Review Letters, 1990, 64, 603-606.	7.8	80
323	High-resolution electron-energy-loss study of the surfaces and energy gaps of cleaved high-temperature superconductors. Physical Review B, 1990, 42, 8057-8072.	3.2	49
324	On the nature of dense CO adlayers. Journal of Chemical Physics, 1990, 92, 5034-5046.	3.0	151

#	Article	IF	CITATIONS
325	Depolarization and metallization in alkali-metal overlayers. Physical Review B, 1990, 42, 3171-3174.	3.2	58
326	Work function, optical absorption, and second-harmonic generation from alkali-metal atoms adsorbed on metal surfaces. Physical Review B, 1989, 39, 8220-8235.	3.2	57
327	Vibrational line shapes of low-frequency adsorbate modes: CO on Pt(111). Physical Review B, 1989, 40, 10273-10281.	3.2	90
328	Inelastic scattering of electrons from accumulation and inversion layers. Physical Review B, 1989, 40, 7819-7824.	3.2	6
329	Monte-Carlo calculations of adsorbate structures. Solid State Communications, 1989, 70, 211-214.	1.9	18
330	On the role of the vibrational entropy in phase transitions at surfaces. Solid State Communications, 1989, 70, 215-218.	1.9	5
331	The potential energy surface, vibrational phase relaxation and the order-disorder transition in the adsorption system Pt{111}-CO. Surface Science, 1989, 213, 49-89.	1.9	301
332	Monte Carlo calculations of adsorbate structures and the role of the vibrational entropy in phase transitions at surfaces. Physical Review B, 1989, 40, 7115-7123.	3.2	30
333	Vibrational lineshapes for NO on Ni(111). Surface Science, 1989, 218, 494-506.	1.9	47
334	On the nature of the frustrated translations for CO on metal surfaces. Chemical Physics Letters, 1988, 149, 278-283.	2.6	27
335	Self-consistent dynamic image potential in tunneling. Physical Review B, 1988, 38, 9616-9627.	3.2	87
336	Vibrational phase relaxation at surfaces: The role of lateral interaction. Journal of Chemical Physics, 1988, 88, 3349-3352.	3.0	16
337	Inelastic vacuum tunneling. Physica Scripta, 1988, 38, 282-290.	2.5	64
338	Theory of the local tunneling spectrum of a vibrating adsorbate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 331-335.	2.1	61
339	Dynamic polarizability of small metal particles. Physical Review B, 1987, 35, 596-606.	3.2	62
340	Electron-energy-loss study of the space-charge region at semiconductor surfaces. Physical Review B, 1987, 35, 9128-9134.	3.2	32
341	Inelastic electron tunneling from a metal tip: The contribution from resonant processes. Physical Review Letters, 1987, 59, 339-342.	7.8	344
342	Vibrational energy relaxation at surfaces: O2 chemisorbed on Pt(111). Chemical Physics Letters, 1987, 139, 457-462.	2.6	32

#	Article	IF	CITATIONS
343	The atomic force microscope: Can it be used to study biological molecules?. Chemical Physics Letters, 1987, 141, 366-368.	2.6	66
344	Vibrational phase relaxation at surfaces: The role of lateral interaction. Journal of Electron Spectroscopy and Related Phenomena, 1987, 45, 215-225.	1.7	34
345	Cluster study of the interaction of a Co molecule with an aluminium surface. Surface Science, 1986, 171, 219-225.	1.9	29
346	Vibrational Phase Relaxation at Surfaces. Studies in Surface Science and Catalysis, 1986, 26, 79-82.	1.5	0
347	Inelastic Electron Scattering from Ultrathin Metallic Films on Si(111). Studies in Surface Science and Catalysis, 1986, , 83-88.	1.5	0
348	Optical absorption and exciton motion in the photosynthetic unit. Chemical Physics Letters, 1986, 128, 107-112.	2.6	8
349	On the nature of low-frequency vibrational modes in globular protein molecules immersed in water. Chemical Physics Letters, 1986, 127, 428-431.	2.6	9
350	Vibrational phase relaxation at surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1986, 39, 79-82.	1.7	2
351	Inelastic electron scattering from ultrathin metallic films on Si(111). Journal of Electron Spectroscopy and Related Phenomena, 1986, 39, 83-88.	1.7	1
352	Inelastic electron tunnelling from a metal tip. Solid State Communications, 1986, 57, 769-772.	1.9	114
353	Electronic conductivity of Si(111)-7×7. Physical Review B, 1986, 34, 5916-5917.	3.2	17
354	Vibrational dephasing of terminally bonded CO on Ru(001). Physical Review B, 1986, 34, 4354-4357.	3.2	43
355	Influence of exciton motion on the shape of optical absorption lines: Applications to vibrations at surfaces. Physical Review B, 1986, 34, 2266-2283.	3.2	156
356	Optical properties of orientationally disordered systems. Physical Review B, 1986, 34, 8941-8943.	3.2	10
357	Properties of ultrathin metallic films on Si(111) determined by high-resolution electron energy loss spectroscopy. Applications of Surface Science, 1985, 22-23, 415-425.	1.0	Ο
358	Novel microstructure and surface conductivity of ultra-thin metallic films on Si(111). Solid State Communications, 1985, 54, 425-428.	1.9	5
359	Determination of the Surface Conductivity of Ultrathin Metallic Films on Si(111) by High-Resolution Electron-Energy-Loss Spectroscopy. Physical Review Letters, 1985, 54, 584-587.	7.8	22
360	Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111). Physical Review B, 1985, 32, 3586-3596.	3.2	254

#	Article	IF	CITATIONS
361	Vibrational dephasing by the exchange mechanism: Some new results. Journal of Chemical Physics, 1985, 83, 5610-5618.	3.0	34
362	Electron-hole pair production at metal surfaces. Physical Review B, 1985, 31, 1863-1872.	3.2	149
363	Vibrational Phase Relaxation at Surfaces: CO on Ni(111). Physical Review Letters, 1985, 54, 2119-2122.	7.8	164
364	Quasielastic peak in electron scattering from metallic surfaces. Physical Review Letters, 1985, 55, 2957-2959.	7.8	5
365	Determination of the frequency-dependent resistivity of ultrathin metallic films on Si(111). Physical Review B, 1985, 31, 1856-1862.	3.2	26
366	High resolution electron energy loss studies of Fermi level states of clean and metallized Si(111) surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1984, 2, 384.	1.6	17
367	Vibrational energy and phase relaxation at surfaces. Journal of Physics C: Solid State Physics, 1984, 17, 4741-4750.	1.5	95
368	Long-Range Electron-Phonon Coupling at Metal Surfaces. Physical Review Letters, 1984, 52, 2073-2076.	7.8	43
369	Dynamical processes at surfaces: Excitation of electron-hole pairs. Physical Review B, 1984, 29, 4382-4394.	3.2	89
370	Inelastic electron scattering from thin metal films. Solid State Communications, 1984, 52, 811-813.	1.9	25
371	Reference-plane position for the atom-surface van der Waals interaction. Physical Review B, 1984, 30, 5669-5679.	3.2	120
372	Inelastic scattering of slow electrons from Si(111) surfaces. Physical Review B, 1984, 30, 5968-5986.	3.2	154
373	Excited states at metal surfaces and their non-radiative relaxation. The Journal of Physical Chemistry, 1984, 88, 837-848.	2.9	218
374	Dynamical Processes at Surfaces: Excitation of Electron-Hole Pairs and Phonons. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1984, , 257-269.	0.2	0
375	Lateral interactions and vibrational lifetimes. Journal of Electron Spectroscopy and Related Phenomena, 1983, 29, 43-57.	1.7	20
376	Optical properties of two-dimensional systems of randomly distributed particles. Physical Review B, 1983, 28, 4247-4254.	3.2	115
377	Optical properties of small metallic particles in a continuous dielectric medium. Journal of Physics C: Solid State Physics, 1983, 16, 5375-5391.	1.5	77
378	Relation between Dynamical Processes at Surfaces and Electron-Energy-Loss Measurements. Physical Review Letters, 1983, 50, 1089-1091.	7.8	50

#	Article	IF	CITATIONS
379	Long-Range Scattering of Electrons by Electron-Hole Pair Excitations at Metal Surfaces. Physical Review Letters, 1983, 50, 2028-2031.	7.8	44
380	Temperature-Dependent Surface States and Transitions of Si(111)-7×7. Physical Review Letters, 1983, 51, 2214-2217.	7.8	153
381	Sum rules for surface response functions with application to the van der Waals interaction between an atom and a metal. Physical Review B, 1983, 27, 6058-6065.	3.2	72
382	On the nature and decay of electronically excited states at metal surfaces. Journal of Chemical Physics, 1983, 79, 5156-5162.	3.0	32
383	Lateral Interactions and Vibrational Lifetimes. Studies in Surface Science and Catalysis, 1983, , 43-57.	1.5	Ο
384	Vibrational Damping of Adsorbed Molecules: Methoxide on Cu(100). Physical Review Letters, 1982, 48, 549-552.	7.8	90
385	Indirect vibrational coupling between adsorbed molecules. Surface Science, 1982, 116, 585-595.	1.9	22
386	Electron-hole-pair quenching of excited states near a metal. Physical Review B, 1982, 26, 5409-5415.	3.2	313
387	Optical properties of inhomogeneous media. Solid State Communications, 1982, 44, 1637-1640.	1.9	64
388	Vibrational Lifetimes for Molecules Adsorbed on Metal Surfaces. , 1982, , 113-122.		0
389	Vibrational interaction between molecules adsorbed on a metal surface: The dipole-dipole interaction. Physical Review B, 1981, 24, 6954-6970.	3.2	540
390	Collective vibrational modes of isotopic mixtures of CO on Cu(111) and Cu(001). Surface Science, 1981, 110, 356-368.	1.9	82
391	Electronic damping of a vibrating dipole near a metal. Journal of Physics C: Solid State Physics, 1981, 14, 5583-5589.	1.5	21
392	On the theory of surface-enhanced Raman scattering. Chemical Physics Letters, 1981, 82, 561-565.	2.6	273
393	Collective vibrational modes in isotopic mixtures of CO adsorbed on Cu (100). Solid State Communications, 1980, 36, 613-617.	1.9	54
394	On the Debye-Waller factor in molecular beam scattering experiments. Solid State Communications, 1980, 36, 271-273.	1.9	4
395	Vibrational excitation cross-sections for adsorbed CO. Solid State Communications, 1980, 34, 473-476.	1.9	45
396	Vibrational lifetime for CO adsorbed on Cu(100). Solid State Communications, 1980, 36, 175-179.	1.9	354

#	Article	IF	CITATIONS
397	On the mathematical structure of the Lindhard dielectric tensor. Journal of Physics C: Solid State Physics, 1980, 13, 435-439.	1.5	8
398	Inelastic Electron Scattering by a Collective Vibrational Mode of Adsorbed CO. Physical Review Letters, 1980, 45, 1421-1424.	7.8	99
399	Inelastic scattering of slow electrons from adsorbed molecules. Surface Science, 1980, 92, 265-282.	1.9	71
400	Inelastic scattering of slow electrons from adsorbed CO. Surface Science, 1980, 99, 283-288.	1.9	15
401	Damping of vibrations in molecules adsorbed on a metal surface. Surface Science, 1980, 97, 609-624.	1.9	119
402	Absorption of photons by molecules adsorbed on metal surfaces. Solid State Communications, 1979, 30, 163-166.	1.9	49
403	Damping of excited molecules located above a metal surface. Solid State Communications, 1978, 27, 417-421.	1.9	21
404	Theory of the damping of excited molecules located above a metal surface. Journal of Physics C: Solid State Physics, 1978, 11, 4251-4269.	1.5	133
405	Theory of inelastic scattering of slow electrons by molecules absorbed on metal surfaces. Solid State Communications, 1977, 24, 573-575.	1.9	80