
Sebastian E Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>C4</scp> â€dicarboxylates and <scp>l</scp> â€aspartate utilization by <scp><i>Escherichia coli</i></scp> Kâ€12 in the mouse intestine: <scp>l</scp> â€aspartate as a major substrate for fumarate respiration and as a nitrogen source. Environmental Microbiology, 2021, 23, 2564-2577.	3.8	17
2	Reshaping of bacterial molecular hydrogen metabolism contributes to the outgrowth of commensal E. coli during gut inflammation. ELife, 2021, 10, .	6.0	9
3	How microbiological tests reflect bacterial pathogenesis and host adaptation. Brazilian Journal of Microbiology, 2021, 52, 1745-1753.	2.0	1
4	Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host and Microbe, 2021, 29, 1531-1544.e9.	11.0	12
5	Endocannabinoids Inhibit the Induction of Virulence in Enteric Pathogens. Cell, 2020, 183, 650-665.e15.	28.9	31
6	Epithelial-Derived Reactive Oxygen Species Enable AppBCX-Mediated Aerobic Respiration of Escherichia coli during Intestinal Inflammation. Cell Host and Microbe, 2020, 28, 780-788.e5.	11.0	46
7	<scp>l</scp> -Arginine sensing regulates virulence gene expression and disease progression in enteric pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12387-12393.	7.1	29
8	Salmonella finds a way: Metabolic versatility of Salmonella enterica serovar Typhimurium in diverse host environments. PLoS Pathogens, 2020, 16, e1008540.	4.7	29
9	Xenosiderophore Utilization Promotes Bacteroides thetaiotaomicron Resilience during Colitis. Cell Host and Microbe, 2020, 27, 376-388.e8.	11.0	61
10	Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. Journal of Experimental Medicine, 2019, 216, 2378-2393.	8.5	88
11	Infection-Induced Intestinal Dysbiosis Is Mediated by Macrophage Activation and Nitrate Production. MBio, 2019, 10, .	4.1	49
12	STAT2 dependent Type I Interferon response promotes dysbiosis and luminal expansion of the enteric pathogen Salmonella Typhimurium. PLoS Pathogens, 2019, 15, e1007745.	4.7	25
13	Transition metals and host-microbe interactions in the inflamed intestine. BioMetals, 2019, 32, 369-384.	4.1	10
14	Using Enteric Pathogens to Probe the Gut Microbiota. Trends in Microbiology, 2019, 27, 243-253.	7.7	19
15	Host-Derived Metabolites Modulate Transcription of <i>Salmonella</i> Genes Involved in <scp>l</scp> -Lactate Utilization during Gut Colonization. Infection and Immunity, 2019, 87, .	2.2	20
16	Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination. Cell Host and Microbe, 2018, 23, 77-88.e5.	11.0	148
17	Dysbiosis-Associated Change in Host Metabolism Generates Lactate to Support Salmonella Growth. Cell Host and Microbe, 2018, 23, 54-64.e6.	11.0	154
18	Precision editing of the gut microbiota ameliorates colitis. Nature, 2018, 553, 208-211.	27.8	377

SEBASTIAN E WINTER

#	Article	IF	CITATIONS
19	Utilization of Host Polyamines in Alternatively Activated Macrophages Promotes Chronic Infection by Brucella abortus. Infection and Immunity, 2018, 86, .	2.2	14
20	Murine colitis reveals a disease-associated bacteriophage community. Nature Microbiology, 2018, 3, 1023-1031.	13.3	132
21	Microbial Sensing by Intestinal Myeloid Cells Controls Carcinogenesis and Epithelial Differentiation. Cell Reports, 2018, 24, 2342-2355.	6.4	13
22	Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host and Microbe, 2017, 21, 208-219.	11.0	239
23	Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of <i>Campylobacter jejuni</i> Determinants Required for Commensalism and Virulence. MBio, 2017, 8, .	4.1	68
24	An Oxidative Central Metabolism Enables Salmonella to Utilize Microbiota-Derived Succinate. Cell Host and Microbe, 2017, 22, 291-301.e6.	11.0	124
25	Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science, 2017, 357, 1047-1052.	12.6	267
26	Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis. PLoS Pathogens, 2017, 13, e1006129.	4.7	139
27	Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host and Microbe, 2016, 19, 443-454.	11.0	600
28	Enterococcus faecalis : E.Âcoli 's Siderophore-Inducing Sidekick. Cell Host and Microbe, 2016, 20, 411-412.	11.0	12
29	Virulence factors enhance <i>Citrobacter rodentium</i> expansion through aerobic respiration. Science, 2016, 353, 1249-1253.	12.6	150
30	Energy Taxis toward Host-Derived Nitrate Supports a <i>Salmonella</i> Pathogenicity Island 1-Independent Mechanism of Invasion. MBio, 2016, 7, .	4.1	47
31	Iron acquisition pathways and colonization of the inflamed intestine by Salmonella enterica serovar Typhimurium. International Journal of Medical Microbiology, 2016, 306, 604-610.	3.6	26
32	Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut. MBio, 2016, 7, .	4.1	100
33	The Flagellar Regulator TviA Reduces Pyroptosis by Salmonella enterica Serovar Typhi. Infection and Immunity, 2015, 83, 1546-1555.	2.2	36
34	Dysbiosis in the inflamed intestine. Gut Microbes, 2014, 5, 71-73.	9.8	153
35	Salmonella enterica Serovar Typhi Conceals the Invasion-Associated Type Three Secretion System from the Innate Immune System by Gene Regulation. PLoS Pathogens, 2014, 10, e1004207.	4.7	46
36	The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis. PLoS Pathogens, 2014, 10, e1004306.	4.7	68

SEBASTIAN E WINTER

#	Article	IF	CITATIONS
37	Why related bacterial species bloom simultaneously in the gut: principles underlying the â€~Like will to like' concept. Cellular Microbiology, 2014, 16, 179-184.	2.1	85
38	Salmonella enterica Serovar Typhi Impairs CD4 T Cell Responses by Reducing Antigen Availability. Infection and Immunity, 2014, 82, 2247-2254.	2.2	25
39	The dynamics of gutâ€associated microbial communities during inflammation. EMBO Reports, 2013, 14, 319-327.	4.5	263
40	Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature, 2013, 496, 233-237.	27.8	210
41	Typhoid. , 2013, , 375-399.		2
42	Host-Derived Nitrate Boosts Growth of <i>E. coli</i> in the Inflamed Gut. Science, 2013, 339, 708-711.	12.6	798
43	Streptomycin-Induced Inflammation Enhances Escherichia coli Gut Colonization Through Nitrate Respiration. MBio, 2013, 4, .	4.1	176
44	Salmonella Uses Energy Taxis to Benefit from Intestinal Inflammation. PLoS Pathogens, 2013, 9, e1003267.	4.7	139
45	Colonization Resistance: Battle of the Bugs or Ménage à Trois with the Host?. PLoS Pathogens, 2013, 9, e1003730.	4.7	79
46	Temporal Expression of Bacterial Proteins Instructs Host CD4 T Cell Expansion and Th17 Development. PLoS Pathogens, 2012, 8, e1002499.	4.7	73
47	Very Long O-antigen Chains Enhance Fitness during Salmonella-induced Colitis by Increasing Bile Resistance. PLoS Pathogens, 2012, 8, e1002918.	4.7	57
48	Typhoid fever. Gut Microbes, 2012, 3, 88-92.	9.8	40
49	Phage-Mediated Acquisition of a Type III Secreted Effector Protein Boosts Growth of <i>Salmonella</i> by Nitrate Respiration. MBio, 2012, 3, .	4.1	194
50	Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets. Science, 2012, 337, 477-481.	12.6	337
51	Salmonella, the host and its microbiota. Current Opinion in Microbiology, 2012, 15, 108-114.	5.1	110
52	Intestinal and chronic infections: <i>Salmonella</i> lifestyles in hostile environments. Environmental Microbiology Reports, 2011, 3, 508-517.	2.4	28
53	Salmonella Exploits Suicidal Behavior of Epithelial Cells. Frontiers in Microbiology, 2011, 2, 48.	3.5	16
54	A <i>Salmonella</i> Virulence Factor Activates the NOD1/NOD2 Signaling Pathway. MBio, 2011, 2, .	4.1	59

SEBASTIAN E WINTER

#	Article	IF	CITATIONS
55	A breathtaking feat. Gut Microbes, 2011, 2, 58-60.	9.8	59
56	Early MyD88-Dependent Induction of Interleukin-17A Expression during Salmonella Colitis. Infection and Immunity, 2011, 79, 3131-3140.	2.2	40
57	Intestinal inflammation allows <i>Salmonella</i> to use ethanolamine to compete with the microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17480-17485.	7.1	551
58	The Vi Capsular Polysaccharide Prevents Complement Receptor 3-Mediated Clearance of <i>Salmonella enterica</i> Serotype Typhi. Infection and Immunity, 2011, 79, 830-837.	2.2	91
59	Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature, 2010, 467, 426-429.	27.8	1,036
60	Alternative Endogenous Protein Processing via an Autophagy-Dependent Pathway Compensates for <i>Yersinia</i> -Mediated Inhibition of Endosomal Major Histocompatibility Complex Class II Antigen Presentation. Infection and Immunity, 2010, 78, 5138-5150.	2.2	24
61	A Rapid Change in Virulence Gene Expression during the Transition from the Intestinal Lumen into Tissue Promotes Systemic Dissemination of Salmonella. PLoS Pathogens, 2010, 6, e1001060.	4.7	58
62	The Blessings and Curses of Intestinal Inflammation. Cell Host and Microbe, 2010, 8, 36-43.	11.0	43
63	The Capsule-Encoding viaB Locus Reduces Intestinal Inflammation by a Salmonella Pathogenicity Island 1-Independent Mechanism. Infection and Immunity, 2009, 77, 2932-2942.	2.2	45
64	Contribution of Flagellin Pattern Recognition to Intestinal Inflammation during <i>Salmonella enterica</i> Serotype Typhimurium Infection. Infection and Immunity, 2009, 77, 1904-1916.	2.2	86
65	The TviA auxiliary protein renders the <i>Salmonella enterica</i> serotype Typhi RcsB regulon responsive to changes in osmolarity. Molecular Microbiology, 2009, 74, 175-193.	2.5	77
66	Simian immunodeficiency virus–induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nature Medicine, 2008, 14, 421-428.	30.7	509
67	The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cellular Microbiology, 2008, 10, 876-890.	2.1	122
68	Heterologous prime–boost immunizations with different Salmonella serovars for enhanced antigen-specific CD8 T-cell induction. Vaccine, 2008, 26, 1879-1886.	3.8	15
69	Clinical pathogenesis of typhoid fever. Journal of Infection in Developing Countries, 2008, 2, 260-6.	1.2	81
70	The Capsule Encoding the viaB Locus Reduces Interleukin-17 Expression and Mucosal Innate Responses in the Bovine Intestinal Mucosa during Infection with Salmonella enterica Serotype Typhi. Infection and Immunity, 2007, 75, 4342-4350.	2.2	83
71	Pre-existing anti-Salmonella vector immunity prevents the development of protective antigen-specific CD8 T-cell frequencies against murine listeriosis. Microbes and Infection, 2007, 9, 1447-1453.	1.9	19
72	The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cellular Microbiology, 2007, 10, 070827234913001-???.	2.1	85

#	Article	IF	CITATIONS
73	The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Molecular Microbiology, 2003, 48, 1357-1376.	2.5	156
74	Molecular and Phenotypic Analysis of the CS54 Island of Salmonella enterica Serotype Typhimurium: Identification of Intestinal Colonization and Persistence Determinants. Infection and Immunity, 2003, 71, 629-640.	2.2	167