Matthew J Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914653/publications.pdf

Version: 2024-02-01

65 papers 12,013 citations

34 h-index 106344 65 g-index

71 all docs

71 docs citations

times ranked

71

14338 citing authors

#	Article	IF	CITATIONS
1	Using 3D geometric morphometrics to aid taxonomic and ecological understanding of a recent speciation event within a small Australian marsupial (<i>Antechinus</i> : Dasyuridae). Zoological Journal of the Linnean Society, 2022, 196, 963-978.	2.3	10
2	The value of updating GenBank accessions for supermatrix phylogeny: The case of the New Guinean marsupial carnivore genus Myoictis. Molecular Phylogenetics and Evolution, 2022, 166, 107328.	2.7	5
3	Global Evolutionary History and Dynamics of Dengue Viruses Inferred from Whole Genome Sequences. Viruses, 2022, 14, 703.	3.3	9
4	Identifying Complex DNA Contamination in Pig-Footed Bandicoots Helps to Clarify an Anomalous Ecological Transition. Diversity, 2022, 14, 352.	1.7	10
5	Enhancing mitogenomic phylogeny and resolving the relationships of extinct megafaunal placental mammals. Molecular Phylogenetics and Evolution, 2021, 158, 107082.	2.7	7
6	Australian Rodents Reveal Conserved Cranial Evolutionary Allometry across 10 Million Years of Murid Evolution. American Naturalist, 2020, 196, 755-768.	2.1	26
7	Skull shape of a widely distributed, endangered marsupial reveals little evidence of local adaptation between fragmented populations. Ecology and Evolution, 2020, 10, 9707-9720.	1.9	13
8	Conflict Resolution for Mesozoic Mammals: Reconciling Phylogenetic Incongruence Among Anatomical Regions. Frontiers in Genetics, 2020, 11, 0651.	2.3	11
9	Systematics, biogeography and ancestral state of the Australian marsupial genus Antechinus (Dasyuromorphia: Dasyuridae). Zoological Journal of the Linnean Society, 2019, 186, 553-568.	2.3	12
10	A molecular and morphometric assessment of the systematics of the Macropus complex clarifies the tempo and mode of kangaroo evolution. Zoological Journal of the Linnean Society, 2019, 186, 793-812.	2.3	23
11	Reconstructing the Evolution of Giant Extinct Kangaroos: Comparing the Utility of DNA, Morphology, and Total Evidence. Systematic Biology, 2019, 68, 520-537.	5.6	25
12	Speciation Generates Mosaic Genomes in Kangaroos. Genome Biology and Evolution, 2018, 10, 33-44.	2.5	26
13	Evidence for a Large Expansion and Subfunctionalization of Globin Genes in Sea Anemones. Genome Biology and Evolution, 2018, 10, 1892-1901.	2.5	8
14	Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia:) Tj ETQq0 0 0 rgl 224-256.	BT /Overlo 0.5	ck 10 Tf 50 21 51
15	The soft explosive model of placental mammal evolution. BMC Evolutionary Biology, 2018, 18, 104.	3.2	35
16	Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses. PeerJ, 2018, 6, e5032.	2.0	35
17	Sharing is caring? Measurement error and the issues arising from combining 3D morphometric datasets. Ecology and Evolution, 2017, 7, 7034-7046.	1.9	57
18	Resolving kangaroo phylogeny and overcoming retrotransposon ascertainment bias. Scientific Reports, 2017, 7, 16811.	3.3	18

#	Article	IF	CITATIONS
19	The complete mitochondrial genome of the eastern grey kangaroo (<i>Macropus giganteus</i>). Mitochondrial DNA, 2016, 27, 1366-1367.	0.6	4
20	Ancient DNA reveals complexity in the evolutionary history and taxonomy of the endangered Australian brush-tailed bettongs (Bettongia: Marsupialia: Macropodidae: Potoroinae). Biodiversity and Conservation, 2016, 25, 2907-2927.	2.6	14
21	Resolving the evolution of the mammalian middle ear using Bayesian inference. Frontiers in Zoology, 2016, 13, 39.	2.0	12
22	A mixed relaxed clock model. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150132.	4.0	48
23	Closing the gap between rocks and clocks using total-evidence dating. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150136.	4.0	115
24	Geomolecular Dating and the Origin of Placental Mammals. Systematic Biology, 2016, 65, 546-557.	5.6	61
25	The Fossil Calibration Database—A New Resource for Divergence Dating. Systematic Biology, 2015, 64, 853-859.	5.6	54
26	Comment on "Whole-genome analyses resolve early branches in the tree of life of modern birds― Science, 2015, 349, 1460-1460.	12.6	36
27	Avian Diversification Patterns across the K-Pg Boundary: Influence of Calibrations, Datasets, and Model Misspecification (sup > 1 < /sup > . Annals of the Missouri Botanical Garden, 2015, 100, 300-328.	1.3	43
28	Oldest Pathology in a Tetrapod Bone Illuminates the Origin of Terrestrial Vertebrates. PLoS ONE, 2015, 10, e0125723.	2.5	25
29	Thorough assessment of DNA preservation from fossil bone and sediments excavated from a late Pleistocene–Holocene cave deposit on Kangaroo Island, South Australia. Quaternary Science Reviews, 2014, 84, 56-64.	3.0	36
30	Molecular Phylogeny, Biogeography, and Habitat Preference Evolution of Marsupials. Molecular Biology and Evolution, 2014, 31, 2322-2330.	8.9	189
31	The linking of plate tectonics and evolutionary divergence. Current Biology, 2013, 23, R603-R605.	3.9	14
32	Time and space in biogeography: response to Parenti & Ebach (2013). Journal of Biogeography, 2013, 40, 2204-2206.	3.0	12
33	Inferring Kangaroo Phylogeny from Incongruent Nuclear and Mitochondrial Genes. PLoS ONE, 2013, 8, e57745.	2.5	35
34	Bayesian Estimation of Substitution Rates from Ancient DNA Sequences with Low Information Content. Systematic Biology, 2011, 60, 366-375.	5.6	75
35	Time-dependent rates of molecular evolution. Molecular Ecology, 2011, 20, 3087-3101.	3.9	473
36	The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae). Molecular Phylogenetics and Evolution, 2011, 59, 615-622.	2.7	66

#	Article	IF	Citations
37	Evolutionary relationships and divergence times among the native rats of Australia. BMC Evolutionary Biology, 2010, 10, 375.	3.2	34
38	Tinamous and Moa Flock Together: Mitochondrial Genome Sequence Analysis Reveals Independent Losses of Flight among Ratites. Systematic Biology, 2010, 59, 90-107.	5.6	185
39	Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17089-17094.	7.1	126
40	Branch-length estimation bias misleads molecular dating for a vertebrate mitochondrial phylogeny. Gene, 2009, 441, 132-140.	2.2	91
41	Accounting for Calibration Uncertainty in Phylogenetic Estimation of Evolutionary Divergence Times. Systematic Biology, 2009, 58, 367-380.	5.6	789
42	Toward Resolving Deep Neoaves Phylogeny: Data, Signal Enhancement, and Priors. Molecular Biology and Evolution, 2009, 26, 313-326.	8.9	87
43	Family-level relationships among the Australasian marsupial "herbivores―(Diprotodontia: Koala,) Tj ETQq1 1	0.784314 2.7	rgBT /Overlo
44	Dating of divergences within the Rattus genus phylogeny using whole mitochondrial genomes. Molecular Phylogenetics and Evolution, 2008, 49, 460-466.	2.7	70
45	Bird evolution: testing the metaves clade with six new mitochondrial genomes. BMC Evolutionary Biology, 2008, 8, 20.	3.2	70
46	A Bias in ML Estimates of Branch Lengths in the Presence of Multiple Signals. Molecular Biology and Evolution, 2008, 25, 239-242.	8.9	21
47	The Prehistory of Potyviruses: Their Initial Radiation Was during the Dawn of Agriculture. PLoS ONE, 2008, 3, e2523.	2.5	182
48	Evidence for Time Dependency of Molecular Rate Estimates. Systematic Biology, 2007, 56, 515-522.	5.6	257
49	Mass survivals. Nature, 2007, 446, 501-502.	27.8	5
50	Combined Mitochondrial and Nuclear DNA Sequences Resolve the Interrelations of the Major Australasian Marsupial Radiations. Systematic Biology, 2006, 55, 122-137.	5.6	88
51	Relaxed Phylogenetics and Dating with Confidence. PLoS Biology, 2006, 4, e88.	5.6	5,566
52	Evolution of the extinct Sabretooths and the American cheetah-like cat. Current Biology, 2005, 15, R589-R590.	3.9	105
53	Accuracy of Rate Estimation Using Relaxed-Clock Models with a Critical Focus on the Early Metazoan Radiation. Molecular Biology and Evolution, 2005, 22, 1355-1363.	8.9	169
54	Telling the Evolutionary Time: Molecular Clocks and the Fossil Record.â€"Philip C. J. Donoghue and M. Paul Smith, editors Systematic Biology, 2005, 54, 174-176.	5.6	0

#	Article	IF	CITATIONS
55	Geologically ancient DNA: fact or artefact?. Trends in Microbiology, 2005, 13, 212-220.	7.7	149
56	Time Dependency of Molecular Rate Estimates and Systematic Overestimation of Recent Divergence Times. Molecular Biology and Evolution, 2005, 22, 1561-1568.	8.9	933
57	Genome-Scale Phylogeny and the Detection of Systematic Biases. Molecular Biology and Evolution, 2004, 21, 1455-1458.	8.9	412
58	A description of the Mei2-like protein family; structure, phylogenetic distribution and biological context. Development Genes and Evolution, 2004, 214, 149-158.	0.9	27
59	The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution?. Trends in Ecology and Evolution, 2004, 19, 516-522.	8.7	62
60	Comment on "Hexapod Origins: Monophyletic or Paraphyletic?". Science, 2003, 301, 1482d-1482.	12.6	143
61	Prokaryote and eukaryote evolvability. BioSystems, 2003, 69, 163-185.	2.0	73
62	The root of the mammalian tree inferred from whole mitochondrial genomes. Molecular Phylogenetics and Evolution, 2003, 28, 171-185.	2.7	253
63	Four New Mitochondrial Genomes and the Increased Stability of Evolutionary Trees of Mammals from Improved Taxon Sampling. Molecular Biology and Evolution, 2002, 19, 2060-2070.	8.9	138
64	Mitochondrial genomes of a bandicoot and a brushtail possum confirm the monophyly of australidelphian marsupials. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1533-1538.	2.6	61
65	Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends in Ecology and Evolution, 1999, 14, 113-118.	8.7	156