Lei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914642/publications.pdf Version: 2024-02-01

I EI SHI

#	Article	IF	CITATIONS
1	Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review. Applied Catalysis B: Environmental, 2019, 248, 405-422.	20.2	141
2	Modification of metal organic framework HKUST-1 with CuCl for selective separation of CO/H2 and CO/N2. Journal of Porous Materials, 2018, 25, 1513-1519.	2.6	11
3	Submillimeter-scale heterogeneity of labile phosphorus in sediments characterized by diffusive gradients in thin films and spatial analysis. Chemosphere, 2018, 194, 614-621.	8.2	6
4	High-performance and versatile electrochemical aptasensor based on self-supported nanoporous gold microelectrode and enzyme-induced signal amplification. Biosensors and Bioelectronics, 2018, 102, 41-48.	10.1	74
5	Needle-based sampling coupled with colorimetric reaction catalyzed by layered double hydroxide peroxidase mimic for rapid detection of the change of d -glucose levels with time in bananas. Analytica Chimica Acta, 2018, 1001, 32-39.	5.4	27
6	Adsorption Mechanism and Regeneration Performance of 13X for H ₂ S and SO ₂ . Energy & Fuels, 2018, 32, 12742-12749.	5.1	26
7	Simultaneous measurements of cations and anions using diffusive gradients in thin films with a ZrO-Chelex mixed binding layer. Analytica Chimica Acta, 2017, 972, 1-11.	5.4	89
8	Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions. Analytica Chimica Acta, 2017, 968, 21-29.	5.4	98
9	A highly sensitive and reusable electrochemical mercury biosensor based on tunable vertical single-walled carbon nanotubes and a target recycling strategy. Journal of Materials Chemistry B, 2017, 5, 1073-1080.	5.8	41
10	A highly sensitive electrochemical IFN-γ aptasensor based on a hierarchical graphene/AuNPs electrode interface with a dual enzyme-assisted amplification strategy. RSC Advances, 2017, 7, 45053-45060.	3.6	18
11	Mobile phosphorus stratification in sediments by aluminum immobilization. Chemosphere, 2017, 186, 644-651.	8.2	48
12	A facile and green strategy for preparing newly-designed 3D graphene/gold film and its application in highly efficient electrochemical mercury assay. Biosensors and Bioelectronics, 2017, 89, 871-879.	10.1	56
13	Fabrication of a Homogeneous, Integrated, and Compact Film of Organic–Inorganic Hybrid Ni(en) ₃ Ag ₂ I ₄ with Near-Infrared Absorbance and Semiconducting Features. Inorganic Chemistry, 2016, 55, 1230-1235.	4.0	12
14	Prussian blue nanocubes decorated three-dimensional silver nanowires network for high-performance electrochemical biosensing. Sensors and Actuators B: Chemical, 2015, 221, 1009-1016.	7.8	21
15	Facile fabrication of a three-dimensional gold nanowire array for high-performance electrochemical sensing. Journal of Materials Chemistry B, 2015, 3, 3134-3140.	5.8	25
16	Characterization and Mechanisms of H ₂ S and SO ₂ Adsorption by Activated Carbon. Energy & Fuels, 2015, 29, 6678-6685.	5.1	68
17	An ultrasensitive electrochemical sensing platform for Hg2+ based on a density controllable metal-organic hybrid microarray. Biosensors and Bioelectronics, 2014, 54, 165-170.	10.1	41
18	Three-dimensional porous microarray of gold modified electrode for ultrasensitive and simultaneous assay of various cancer biomarkers. Journal of Materials Chemistry B, 2014, 2, 2658.	5.8	13

Lei Shi

#	Article	IF	CITATIONS
19	Prussian blue nanocubes modified graphite electrodes for the electrochemical detection of various analytes with high performance. Sensors and Actuators B: Chemical, 2014, 202, 820-826.	7.8	18
20	In Situ Fabrication of Threeâ€Dimensional Graphene Films on Gold Substrates with Controllable Pore Structures for Highâ€Performance Electrochemical Sensing. Advanced Functional Materials, 2014, 24, 7032-7041.	14.9	54
21	3D graphene nano-grid as a homogeneous protein distributor for ultrasensitive biosensors. Biosensors and Bioelectronics, 2014, 61, 422-428.	10.1	7
22	A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition. Nanoscale, 2013, 5, 10219.	5.6	34
23	Facile synthesis of hierarchically aloe-like gold micro/nanostructures for ultrasensitive DNA recognition. Biosensors and Bioelectronics, 2013, 49, 184-191.	10.1	39
24	Single layer Prussian blue grid as a versatile enzyme trap for low-potential biosensors. Journal of Materials Chemistry, 2012, 22, 14874.	6.7	19
25	Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress. Journal of Materials Chemistry, 2012, 22, 21917.	6.7	14
26	Hierarchical self-assembly of double structured Prussian blue film for highly sensitive biosensors. Journal of Materials Chemistry, 2011, 21, 11968.	6.7	11