Paul J Tesar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914574/publications.pdf Version: 2024-02-01

DALLI TESAD

#	Article	IF	CITATIONS
1	New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007, 448, 196-199.	27.8	1,975
2	Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Research, 2011, 21, 1273-1283.	5.5	487
3	Derivation of naÃ⁻ve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4484-4489.	7.1	415
4	Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature, 2015, 522, 216-220.	27.8	336
5	Conserved and Divergent Roles of FGF Signaling in Mouse Epiblast Stem Cells and Human Embryonic Stem Cells. Cell Stem Cell, 2010, 6, 215-226.	11.1	308
6	Epigenomic Enhancer Profiling Defines a Signature of Colon Cancer. Science, 2012, 336, 736-739.	12.6	304
7	Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 2015, 28, 441-455.	16.8	249
8	Transcription factor–mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nature Biotechnology, 2013, 31, 426-433.	17.5	244
9	Induction of myelinating oligodendrocytes in human cortical spheroids. Nature Methods, 2018, 15, 700-706.	19.0	242
10	CHD7 Targets Active Gene Enhancer Elements to Modulate ES Cell-Specific Gene Expression. PLoS Genetics, 2010, 6, e1001023.	3.5	213
11	Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell, 2017, 21, 195-208.e6.	11.1	204
12	The Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells. Cell, 2008, 135, 449-461.	28.9	197
13	Identification and Characterization of Cell Type–Specific and Ubiquitous Chromatin Regulatory Structures in the Human Genome. PLoS Genetics, 2007, 3, e136.	3.5	196
14	Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature, 2018, 560, 372-376.	27.8	170
15	ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Human Molecular Genetics, 2010, 19, 2456-2467.	2.9	167
16	Isolation of Epiblast Stem Cells from Preimplantation Mouse Embryos. Cell Stem Cell, 2011, 8, 318-325.	11.1	161
17	Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature, 2017, 547, 355-359.	27.8	156
18	Cell-based therapeutic strategies for multiple sclerosis. Brain, 2017, 140, 2776-2796.	7.6	139

Paul J Tesar

#	Article	IF	CITATIONS
19	Epigenomic Comparison Reveals Activation of "Seed―Enhancers during Transition from Naive to Primed Pluripotency. Cell Stem Cell, 2014, 14, 854-863.	11.1	137
20	Direct and Indirect Contribution of Human Embryonic Stem Cell–Derived Hepatocyte-Like Cells to Liver Repair in Mice. Gastroenterology, 2012, 142, 602-611.	1.3	131
21	StemCellDB: The Human Pluripotent Stem Cell Database at the National Institutes of Health. Stem Cell Research, 2013, 10, 57-66.	0.7	104
22	Drug screening for human genetic diseases using iPSC models. Human Molecular Genetics, 2018, 27, R89-R98.	2.9	99
23	Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8239-8244.	7.1	97
24	Accessing naÃ⁻ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	3.3	92
25	CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Human Molecular Genetics, 2010, 19, 3491-3501.	2.9	91
26	Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nature Methods, 2011, 8, 957-962.	19.0	77
27	Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development (Cambridge), 2012, 139, 3926-3937.	2.5	75
28	Retinal Pigmented Epithelial Cells Obtained from Human Induced Pluripotent Stem Cells Possess Functional Visual Cycle Enzymes in Vitro and in Vivo. Journal of Biological Chemistry, 2013, 288, 34484-34493.	3.4	73
29	Treatment of non-resectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cells. Journal of Gastroenterology and Hepatology (Australia), 2002, 17, 889-896.	2.8	59
30	Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. Journal of Clinical Investigation, 2018, 128, 1043-1056.	8.2	56
31	Modeling the Mutational and Phenotypic Landscapes of Pelizaeus-Merzbacher Disease with Human iPSC-Derived Oligodendrocytes. American Journal of Human Genetics, 2017, 100, 617-634.	6.2	52
32	Transgenerational epigenetic effects of the <i>Apobec1</i> cytidine deaminase deficiency on testicular germ cell tumor susceptibility and embryonic viability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2766-73.	7.1	50
33	Epiblast stem cells contribute new insight into pluripotency and gastrulation. Development Growth and Differentiation, 2010, 52, 293-301.	1.5	40
34	Oligodendrocyte Intrinsic miR-27a Controls Myelination and Remyelination. Cell Reports, 2019, 29, 904-919.e9.	6.4	40
35	Suppression of proteolipid protein rescues Pelizaeus–Merzbacher disease. Nature, 2020, 585, 397-403.	27.8	40
36	Cell Type-Specific Intralocus Interactions Reveal Oligodendrocyte Mechanisms in MS. Cell, 2020, 181, 382-395.e21.	28.9	39

PAUL J TESAR

#	Article	IF	CITATIONS
37	Characterizing medullary and human mesenchymal stem cell-derived adipocytes. Journal of Cellular Physiology, 2006, 207, 722-728.	4.1	34
38	Dysregulated Clial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Reports, 2019, 27, 3832-3843.e6.	6.4	32
39	Isolation and Maintenance of Mouse Epiblast Stem Cells. Methods in Molecular Biology, 2010, 636, 25-44.	0.9	30
40	Transcription Elongation Factor <i>Tcea3</i> Regulates the Pluripotent Differentiation Potential of Mouse Embryonic Stem Cells Via the <i>Lefty1</i> Nodal-Smad2 Pathway. Stem Cells, 2013, 31, 282-292.	3.2	30
41	Concise Review: Stem Cell-Based Treatment of Pelizaeus-Merzbacher Disease. Stem Cells, 2017, 35, 311-315.	3.2	28
42	Chemical Screening Identifies Enhancers of Mutant Oligodendrocyte Survival and Unmasks a Distinct Pathological Phase in Pelizaeus-Merzbacher Disease. Stem Cell Reports, 2018, 11, 711-726.	4.8	28
43	Using <scp>iPSC</scp> â€derived human <scp>DA</scp> neurons from opioidâ€dependent subjects to study dopamine dynamics. Brain and Behavior, 2016, 6, e00491.	2.2	27
44	Transcriptome-Wide Analyses of Human Neonatal Articular Cartilage and Human Mesenchymal Stem Cell-Derived Cartilage Provide a New Molecular Target for Evaluating Engineered Cartilage. Tissue Engineering - Part A, 2018, 24, 335-350.	3.1	27
45	Oligodendrocyte progenitor cell fate and function in development and disease. Current Opinion in Cell Biology, 2021, 73, 35-40.	5.4	27
46	Non-canonical Targets of HIF1a Impair Oligodendrocyte Progenitor Cell Function. Cell Stem Cell, 2021, 28, 257-272.e11.	11.1	25
47	Diverse Chemical Scaffolds Enhance Oligodendrocyte Formation by Inhibiting CYP51, TM7SF2, or EBP. Cell Chemical Biology, 2019, 26, 593-599.e4.	5.2	24
48	Genetic Factors on Mouse Chromosome 18 Affecting Susceptibility to Testicular Germ Cell Tumors and Permissiveness to Embryonic Stem Cell Derivation. Cancer Research, 2009, 69, 9112-9117.	0.9	23
49	Perceptual variation in grading hand, hip and knee radiographs: observations based on an Australian Twin Registry study of osteoarthritis. Annals of the Rheumatic Diseases, 1999, 58, 766-769.	0.9	22
50	Contrasting effects of Deadend1 (Dnd1) gain and loss of function mutations on allelic inheritance, testicular cancer, and intestinal polyposis. BMC Genetics, 2013, 14, 54.	2.7	21
51	Rapid functional genetics of the oligodendrocyte lineage using pluripotent stem cells. Nature Communications, 2018, 9, 3708.	12.8	20
52	Pathogenic Prion Protein Isoforms Are Not Present in Cerebral Organoids Generated from Asymptomatic Donors Carrying the E200K Mutation Associated with Familial Prion Disease. Pathogens, 2020, 9, 482.	2.8	19
53	NG2 expression in NG2 glia is regulated by binding of SoxE and bHLH transcription factors to a Cspg4 intronic enhancer. Clia, 2018, 66, 2684-2699.	4.9	18
54	An ES-Like Pluripotent State in FGF-Dependent Murine iPS cells. PLoS ONE, 2010, 5, e16092.	2.5	17

PAUL J TESAR

#	Article	IF	CITATIONS
55	DNA and Chromatin Modification Networks Distinguish Stem Cell Pluripotent Ground States. Molecular and Cellular Proteomics, 2012, 11, 1036-1047.	3.8	15
56	Lgr5 Marks Post-Mitotic, Lineage Restricted Cerebellar Granule Neurons during Postnatal Development. PLoS ONE, 2014, 9, e114433.	2.5	14
57	Developing therapeutic strategies to promote myelin repair in multiple sclerosis. Expert Review of Neurotherapeutics, 2019, 19, 997-1013.	2.8	13
58	Clemastine fumarate for promotion of optic nerve remyelination. Lancet, The, 2017, 390, 2421-2422.	13.7	11
59	The Chromatin Environment Around Interneuron Genes in Oligodendrocyte Precursor Cells and Their Potential for Interneuron Reprograming. Frontiers in Neuroscience, 2019, 13, 829.	2.8	11
60	Snapshots of Pluripotency. Stem Cell Reports, 2016, 6, 163-167.	4.8	8
61	Inhibition of SC4MOL and HSD17B7 shifts cellular sterol composition and promotes oligodendrocyte formation. RSC Chemical Biology, 2022, 3, 56-68.	4.1	7
62	Generation and Characterization of Epiblast Stem Cells from Blastocyst-Stage Mouse Embryos. Methods in Molecular Biology, 2013, 1074, 1-13.	0.9	6
63	Depletion of Olig2 in oligodendrocyte progenitor cells infected by Theiler's murine encephalomyelitis virus. Journal of NeuroVirology, 2016, 22, 336-348.	2.1	5
64	Lower Dopamine D ₂ Receptor Expression Levels in Human Dopaminergic Neurons Derived From Opioid-Dependent iPSCs. American Journal of Psychiatry, 2016, 173, 429-431.	7.2	4
65	Tracking down the human myelinating cell. Nature Biotechnology, 2011, 29, 881-883.	17.5	3
66	Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development (Cambridge), 2012, 139, 4675-4675.	2.5	2
67	Disorders of myelin. , 2020, , 309-335.		2
68	Cloning advance calls for careful regulation. Nature, 2011, 478, 36-37.	27.8	1
69	Paul Tesar. Nature Methods, 2011, 8, 887-887.	19.0	1
70	#StemCells: Education, Innovation, and Outreach. Cell Stem Cell, 2013, 13, 517-519.	11.1	1
71	iPSC Reprogramming Is Not Just an Open and Shut Case. Cell Stem Cell, 2017, 21, 711-712.	11.1	1
			_

72 Chromatin Regulation by Long Non-coding RNAs. , 2013, , 1-13.

PAUL J TESAR

#	Article	IF	CITATIONS
73	iPSC-Based Disease Modeling and Drug Screening: An Interview with Paul Tesar and Matthew Elitt. Stem Cell Reports, 2018, 11, 613-615.	4.8	0
74	Monkeying Around with the Genome. Science Translational Medicine, 2014, 6, .	12.4	0
75	Somatic Cell Nuclear Transfer Is All Grown Up. Science Translational Medicine, 2014, 6, .	12.4	0
76	Power of the Young—New Stem Cell Source for Treating Autoimmune Disease. Science Translational Medicine, 2014, 6, .	12.4	0
77	A Pillar of Hope for New Multiple Sclerosis Therapeutics. Science Translational Medicine, 2014, 6, .	12.4	0
78	Two Paths Diverged in a Schwann Cell. Science Translational Medicine, 2014, 6, .	12.4	0
79	Stem Cell Therapy for Diabetes Comes of Age. Science Translational Medicine, 2014, 6, .	12.4	0
80	Morphing Cell Identity to Treat Diabetes. Science Translational Medicine, 2014, 6, .	12.4	0
81	Stem cell transplants may HALT multiple sclerosis. Science Translational Medicine, 2015, 7, .	12.4	0
82	Boosting our brains. Science Translational Medicine, 2015, 7, .	12.4	0