Shuang Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7914416/publications.pdf Version: 2024-02-01

SHUANC CU

#	Article	IF	CITATIONS
1	Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society, 2014, 136, 7077-7084.	13.7	1,202
2	3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. Journal of the American Chemical Society, 2015, 137, 8352-8355.	13.7	838
3	3D Microporous Baseâ€Functionalized Covalent Organic Frameworks for Size‣elective Catalysis. Angewandte Chemie - International Edition, 2014, 53, 2878-2882.	13.8	554
4	A Soluble and Highly Conductive Ionomer for Highâ€Performance Hydroxide Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2009, 48, 6499-6502.	13.8	541
5	Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nature Communications, 2014, 5, 4503.	12.8	535
6	Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs. Energy and Environmental Science, 2015, 8, 3515-3530.	30.8	364
7	Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions. Advanced Functional Materials, 2010, 20, 3742-3746.	14.9	243
8	Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chemical Communications, 2011, 47, 2856.	4.1	241
9	All-Soluble All-Iron Aqueous Redox-Flow Battery. ACS Energy Letters, 2016, 1, 89-93.	17.4	213
10	A zinc–iron redox-flow battery under \$100 per kW h of system capital cost. Energy and Environmental Science, 2015, 8, 2941-2945.	30.8	185
11	Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. RSC Advances, 2012, 2, 12683.	3.6	165
12	Quaternary Phosphoniumâ€Based Polymers as Hydroxide Exchange Membranes. ChemSusChem, 2010, 3, 555-558.	6.8	155
13	BCC-Phased PdCu Alloy as a Highly Active Electrocatalyst for Hydrogen Oxidation in Alkaline Electrolytes. Journal of the American Chemical Society, 2018, 140, 16580-16588.	13.7	149
14	Electrocatalytic Nitrate Reduction on Oxide-Derived Silver with Tunable Selectivity to Nitrite and Ammonia. ACS Catalysis, 2021, 11, 8431-8442.	11.2	125
15	Quaternized poly(ether ether ketone) hydroxide exchange membranes for fuel cells. Journal of Membrane Science, 2011, 375, 204-211.	8.2	115
16	An efficient Ag–ionomer interface for hydroxide exchange membrane fuel cells. Chemical Communications, 2013, 49, 131-133.	4.1	113
17	Imidazolium-functionalized poly(ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell. Journal of Power Sources, 2014, 250, 90-97.	7.8	112
18	Ambient Pressure Dry-Gel Conversion Method for Zeolite MFI Synthesis Using Ionic Liquid and Microwave Heating. Journal of the American Chemical Society, 2010, 132, 12776-12777.	13.7	111

Shuang Gu

#	Article	IF	CITATIONS
19	Permethyl Cobaltocenium (Cp*2Co+) as an Ultra-Stable Cation for Polymer Hydroxide-Exchange Membranes. Scientific Reports, 2015, 5, 11668.	3.3	111
20	Size-Dependent Hydrogen Oxidation and Evolution Activities on Supported Palladium Nanoparticles in Acid and Base. Journal of the Electrochemical Society, 2016, 163, F499-F506.	2.9	110
21	Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells. International Journal of Hydrogen Energy, 2012, 37, 5216-5224.	7.1	102
22	A multiple ion-exchange membrane design for redox flow batteries. Energy and Environmental Science, 2014, 7, 2986-2998.	30.8	98
23	Stabilizing the Imidazolium Cation in Hydroxideâ€Exchange Membranes for Fuel Cells. ChemSusChem, 2013, 6, 2079-2082.	6.8	92
24	Structure–Property Relationships in Hydroxideâ€Exchange Membranes with Cation Strings and High Ionâ€Exchange Capacity. ChemSusChem, 2015, 8, 4229-4234.	6.8	85
25	Preparation and characteristics of crosslinked sulfonated poly(phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane. Journal of Membrane Science, 2008, 312, 48-58.	8.2	84
26	Revealing nitrogen-containing species in commercial catalysts used for ammonia electrosynthesis. Nature Catalysis, 2020, 3, 1055-1061.	34.4	73
27	Nonaqueous redox-flow batteries: features, challenges, and prospects. Current Opinion in Chemical Engineering, 2015, 8, 105-113.	7.8	71
28	Manipulating Water in High-Performance Hydroxide Exchange Membrane Fuel Cells through Asymmetric Humidification and Wetproofing. Journal of the Electrochemical Society, 2015, 162, F483-F488.	2.9	71
29	Engineering the Van der Waals Interaction in Crossâ€Linkingâ€Free Hydroxide Exchange Membranes for Low Swelling and High Conductivity. ChemSusChem, 2012, 5, 843-848.	6.8	67
30	Electrochemical Energy Engineering: A New Frontier of Chemical Engineering Innovation. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 429-454.	6.8	64
31	Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC). Journal of Membrane Science, 2006, 281, 121-129.	8.2	63
32	Quaternary phosphonium-functionalized poly(ether ether ketone) as highly conductive and alkali-stable hydroxide exchange membrane for fuel cells. Journal of Membrane Science, 2014, 466, 220-228.	8.2	63
33	Novel interpenetrating polymer network sulfonated poly (phthalazinone ether sulfone) Tj ETQq1 1 0.784314 rgBT 295, 80-87.	/Overlock 8.2	10 Tf 50 1 50
34	A quaternary-ammonium-functionalized covalent organic framework for anion conduction. CrystEngComm, 2017, 19, 4905-4910.	2.6	49
35	Freeze/thaw induced demulsification of water-in-oil emulsions with loosely packed droplets. Separation and Purification Technology, 2007, 56, 175-183.	7.9	47
36	A New Alkaliâ€Stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms. ChemSusChem, 2016, 9, 2374-2379.	6.8	45

Shuang Gu

#	Article	IF	CITATIONS
37	Preparation and characterization of poly(vinylidene fluoride)/sulfonated poly(phthalazinone ether) Tj ETQq1 1 0. 852-860.	784314 rgl 2.6	3T /Overlock 36
38	The state of water in the series of sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes. Chemical Engineering Journal, 2010, 156, 578-581.	12.7	25
39	Electrochemical nitrogen reduction: an intriguing but challenging quest. Trends in Chemistry, 2022, 4, 142-156.	8.5	24
40	Exploiting Immiscible Aqueous-Nonaqueous Electrolyte Interface toward a Membraneless Redox-Flow Battery Concept. Journal of the Electrochemical Society, 2017, 164, A2590-A2593.	2.9	19
41	Facilitated Transport in Hydroxideâ€Exchange Membranes for Postâ€Combustion CO ₂ Separation. ChemSusChem, 2014, 7, 114-116.	6.8	15
42	Exchange current density of the hydrogen oxidation reaction on Pt/C in polymer solid base electrolyte. Electrochemistry Communications, 2015, 61, 57-60.	4.7	15
43	Preparation and characterization of KOH-treated electrospun nanofiber mats as electrodes for iron-based redox-flow batteries. Journal of Energy Storage, 2020, 27, 101053.	8.1	14
44	Sulfonation of poly(phthalazinone ether sulfone ketone) by heterogeneous method and its potential application on proton exchange membrane (PEM). Journal of Applied Polymer Science, 2007, 104, 1002-1009.	2.6	13
45	Relating alkaline stability to the structure of quaternary phosphonium cations. RSC Advances, 2018, 8, 26640-26645.	3.6	12
46	Process engineering in electrochemical energy devices innovation. Chinese Journal of Chemical Engineering, 2016, 24, 39-47.	3.5	11
47	Montmorilloniteâ€reinforced sulfonated poly(phthalazinone ether sulfone ketone) nanocomposite proton exchange membranes for direct methanol fuel cells. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
48	Lowâ€Voltage Gaseous HCl Electrolysis with an Iron Redoxâ€Mediated Cathode for Chlorine Regeneration. Angewandte Chemie - International Edition, 2017, 56, 10735-10739.	13.8	7
49	A General, Analytical Model for Flow Battery Costing and Design. Journal of the Electrochemical Society, 2018, 165, A2209-A2216.	2.9	7
50	Iodine Redox-Mediated Electrolysis for Energy-Efficient Chlorine Regeneration from Gaseous HCl. Journal of the Electrochemical Society, 2017, 164, E138-E143.	2.9	5
51	A methanesulfonic acid/sulfuric acidâ€based route for easilyâ€controllable chloromethylation of poly(ether ether ketone). Journal of Applied Polymer Science, 2015, 132, .	2.6	4
52	Evaluation of Calculating the Isotonic Swelling Ratio of Emulsion Liquid Membrane by Theoretical Viscosity Models. Journal of Dispersion Science and Technology, 2006, 27, 773-779.	2.4	3
53	Lowâ€Voltage Gaseous HCl Electrolysis with an Iron Redoxâ€Mediated Cathode for Chlorine Regeneration. Angewandte Chemie, 2017, 129, 10875-10879.	2.0	3
54	Titelbild: A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange Membrane Fuel Cells (Angew. Chem. 35/2009). Angewandte Chemie, 2009, 121, 6481-6481.	2.0	2

#	Article	IF	CITATIONS
55	Cover Picture: A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange Membrane Fuel Cells (Angew. Chem. Int. Ed. 35/2009). Angewandte Chemie - International Edition, 2009, 48, 6363-6363.	13.8	2
56	Designing Alkaline Exchange Membranes from Scratch. ECS Transactions, 2011, 41, 1761-1774.	0.5	2
57	Stringing Cations in Hydroxide Exchange Membranes for Low Water-Uptake and High Hydroxide-Conductivity. ECS Meeting Abstracts, 2012, , .	0.0	0