

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7913130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RARÎ ³ activation sensitizes human myeloma cells to carfilzomib treatment through the OAS-RNase L innate immune pathway. Blood, 2022, 139, 59-72.	1.4	6
2	ORP4L is a prerequisite for the induction of T-cell leukemogenesis associated with human T-cell leukemia virus 1. Blood, 2022, 139, 1052-1065.	1.4	5
3	Loss of miR-31-5p drives hematopoietic stem cell malignant transformation and restoration eliminates leukemia stem cells in mice. Science Translational Medicine, 2022, 14, eabh2548.	12.4	8
4	ALCAM regulates multiple myeloma chemoresistant side population. Cell Death and Disease, 2022, 13, 136.	6.3	6
5	IL-9/STAT3/fatty acid oxidation–mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity. Journal of Clinical Investigation, 2022, 132, .	8.2	33
6	A novel role of lysophosphatidic acid (LPA) in human myeloma resistance to proteasome inhibitors. Journal of Hematology and Oncology, 2022, 15, 55.	17.0	2
7	ldentification of an immunogenic DKK1 long peptide for immunotherapy of human multiple myeloma. Haematologica, 2021, 106, 838-846.	3.5	6
8	Acetyl-CoA Synthetase 2: A Critical Linkage in Obesity-Induced Tumorigenesis in Myeloma. Cell Metabolism, 2021, 33, 78-93.e7.	16.2	57
9	CD36-mediated ferroptosis dampens intratumoral CD8+ TÂcell effector function and impairs their antitumor ability. Cell Metabolism, 2021, 33, 1001-1012.e5.	16.2	347
10	BMI1 regulates multiple myeloma-associated macrophage's pro-myeloma functions. Cell Death and Disease, 2021, 12, 495.	6.3	16
11	ALCAM-EGFR interaction regulates myelomagenesis. Blood Advances, 2021, 5, 5269-5282.	5.2	10
12	Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell, 2021, 39, 1610-1622.e9.	16.8	25
13	Enhanced CAR-T activity against established tumors by polarizing human T cells to secrete interleukin-9. Nature Communications, 2020, 11, 5902.	12.8	55
14	MIF as a biomarker and therapeutic target for overcoming resistance to proteasome inhibitors in human myeloma. Blood, 2020, 136, 2557-2573.	1.4	33
15	Enhanced Lipid Accumulation and Metabolism Are Required for the Differentiation and Activation of Tumor-Associated Macrophages. Cancer Research, 2020, 80, 1438-1450.	0.9	211
16	Targeting of CD38 by the Tumor Suppressor miR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma. Cancer Research, 2020, 80, 2031-2044.	0.9	36
17	RAR Gamma Activation Sensitizes Human Myeloma Cells to Carfilzomib Treatment through OAS-RNase L Innate Immune Pathway. Blood, 2020, 136, 36-37.	1.4	0
18	MicroRNAâ€31â€5p enhances the Warburg effect <i>via</i> targeting FIH. FASEB Journal, 2019, 33, 545-556.	0.5	45

#	Article	IF	CITATIONS
19	Multiple myeloma cell-derived IL-32Î ³ increases the immunosuppressive function of macrophages by promoting indoleamine 2,3-dioxygenase (IDO) expression. Cancer Letters, 2019, 446, 38-48.	7.2	39
20	Reprogrammed marrow adipocytes contribute to myeloma-induced bone disease. Science Translational Medicine, 2019, 11, .	12.4	69
21	Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment. Cell Metabolism, 2019, 30, 143-156.e5.	16.2	460
22	TNF-α enhances Th9 cell differentiation and antitumor immunity via TNFR2-dependent pathways. , 2019, 7, 28.		47
23	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces peripheral blood abnormalities and plasma cell neoplasms resembling multiple myeloma in mice. Cancer Letters, 2019, 440-441, 135-144.	7.2	10
24	Cholesterol induces T cell exhaustion. Aging, 2019, 11, 7334-7335.	3.1	6
25	Development of an Immunotherapeutic Monoclonal Antibody Recognizing DKK1-HLA-A2 Complex to Treat Human Hematologic Malignancies. Blood, 2019, 134, 5551-5551.	1.4	1
26	miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. Journal of Hematology and Oncology, 2018, 11, 58.	17.0	98
27	Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia, 2018, 32, 2250-2262.	7.2	120
28	Therapeutic effects of the novel subtype-selective histone deacetylase inhibitor chidamide on myeloma-associated bone disease. Haematologica, 2018, 103, 1369-1379.	3.5	23
29	Cholesterol negatively regulates IL-9–producing CD8+ T cell differentiation and antitumor activity. Journal of Experimental Medicine, 2018, 215, 1555-1569.	8.5	98
30	Interleukin-33 Contributes to the Induction of Th9 Cells and Antitumor Efficacy by Dectin-1-Activated Dendritic Cells. Frontiers in Immunology, 2018, 9, 1787.	4.8	33
31	Th9 Cells Represent a Unique Subset of CD4+ T Cells Endowed with the Ability to Eradicate Advanced Tumors. Cancer Cell, 2018, 33, 1048-1060.e7.	16.8	117
32	E-cadherin expression on multiple myeloma cells activates tumor-promoting properties in plasmacytoid DCs. Journal of Clinical Investigation, 2018, 128, 4821-4831.	8.2	31
33	B-Cell Lymphoma Patient-Derived Xenograft Models Enable Drug Discovery and Are a Platform for Personalized Therapy. Clinical Cancer Research, 2017, 23, 4212-4223.	7.0	49
34	Foxo1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of T _H 9 cells programmed by IL-7. Science Signaling, 2017, 10, .	3.6	47
35	C-reactive protein promotes bone destruction in human myeloma through the CD32–p38 MAPK–Twist axis. Science Signaling, 2017, 10, .	3.6	28
36	BAFF is involved in macrophage-induced bortezomib resistance in myeloma. Cell Death and Disease, 2017, 8, e3161-e3161.	6.3	18

#	Article	IF	CITATIONS
37	Role of Myeloma-Derived MIF in Myeloma Cell Adhesion to Bone Marrow and Chemotherapy Response. Journal of the National Cancer Institute, 2016, 108, djw131.	6.3	37
38	IL-15 enhances the antitumor effect of human antigen-specific CD8+ T cells by cellular senescence delay. Oncolmmunology, 2016, 5, e1237327.	4.6	17
39	Dectin-1-activated dendritic cells: A potent Th9 cell inducer for tumor immunotherapy. Oncolmmunology, 2016, 5, e1238558.	4.6	15
40	ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival. Nature Communications, 2016, 7, 12702.	12.8	64
41	Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nature Communications, 2016, 7, 12368.	12.8	103
42	Could B7-H4 serve as a target to activate anti-cancer immunity?. International Immunopharmacology, 2016, 38, 97-103.	3.8	15
43	Targeting Myeloma-Associated Macrophage Inhibits Multiple Myeloma Progression By Enhancing Anti-Tumor Cytotoxic CD4+ T Cell Response. Blood, 2016, 128, 481-481.	1.4	0
44	AMPK Expressed By Multiple Myeloma Cells Inhibited Metformin-Induced Myeloma Cells Proliferation. Blood, 2016, 128, 5703-5703.	1.4	0
45	Remodeling Ca2+ Flux By ORP4L Is Essential for Leukemia Stem Cells (LSCs) Survival. Blood, 2016, 128, 5257-5257.	1.4	0
46	Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget, 2015, 6, 24218-24229.	1.8	66
47	Oxysterol-binding Protein-related Protein 8 (ORP8) Increases Sensitivity of Hepatocellular Carcinoma Cells to Fas-Mediated Apoptosis. Journal of Biological Chemistry, 2015, 290, 8876-8887.	3.4	36
48	PD-L1–Driven Tolerance Protects Neurogenin3-Induced Islet Neogenesis to Reverse Established Type 1 Diabetes in NOD Mice. Diabetes, 2015, 64, 529-540.	0.6	21
49	Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models. Cancer Letters, 2015, 356, 443-453.	7.2	52
50	p38 MAPK inhibits breast cancer metastasis through regulation of stromal expansion. International Journal of Cancer, 2015, 136, 34-43.	5.1	45
51	Anti-β2-microglobulin monoclonal antibodies overcome bortezomib resistance in multiple myeloma by inhibiting autophagy. Oncotarget, 2015, 6, 8567-8578.	1.8	26
52	CD4+ T cells play a crucial role for lenalidomide <i>in vivo</i> anti-tumor activity in murine multiple myeloma. Oncotarget, 2015, 6, 36032-36040.	1.8	10
53	Human Osteoclasts Are Inducible Immunosuppressive Cells in Response to T cell–Derived IFN-γ and CD40 Ligand In Vitro. Journal of Bone and Mineral Research, 2014, 29, 2666-2675.	2.8	36
54	Tumor-specific IL-9–producing CD8 ⁺ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2265-2270.	7.1	116

#	Article	IF	CITATIONS
55	Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma. British Journal of Haematology, 2014, 166, 690-701.	2.5	30
56	Anticancer Tc9 cells: Long-lived tumor-killing T cells for adoptive therapy. Oncolmmunology, 2014, 3, e28542.	4.6	11
57	Fibroblast activation protein protects bortezomib-induced apoptosis in multiple myeloma cells through Î ² -catenin signaling pathway. Cancer Biology and Therapy, 2014, 15, 1413-1422.	3.4	22
58	Transfection of chimeric anti D138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Molecular Oncology, 2014, 8, 297-310.	4.6	215
59	Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy. Cancer Immunology, Immunotherapy, 2014, 63, 835-845.	4.2	36
60	Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nature Medicine, 2014, 20, 676-681.	30.7	199
61	USP18 is crucial for IFN-γ-mediated inhibition of B16 melanoma tumorigenesis and antitumor immunity. Molecular Cancer, 2014, 13, 132.	19.2	31
62	p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression. Nature Communications, 2014, 5, 4229.	12.8	49
63	A critical role of autocrine sonic hedgehog signaling in human CD138+ myeloma cell survival and drug resistance. Blood, 2014, 124, 2061-2071.	1.4	87
64	PLK1 and β-TrCP-Dependent Ubiquitination and Degradation of Rap1GAP Controls Cell Proliferation. PLoS ONE, 2014, 9, e110296.	2.5	7
65	Anti-β2 Microglobulin Monoclonal Antibodies Overcome Bortezomib-Induced Drug Resistance In Multiple Myeloma By Inhibition Of Autophagy. Blood, 2013, 122, 929-929.	1.4	0
66	The Expression Of CD200 As a Prognostic Factor In Newly Diagnosed Multiple Myeloma. Blood, 2013, 122, 3082-3082.	1.4	1
67	Fibroblast Activation Protein Protects Bortezomib Induced Apoptosis In Multiple Myeloma Cells Through β-Catenin Signaling Pathway. Blood, 2013, 122, 3083-3083.	1.4	0
68	p38 MAPK in Myeloma Cells Regulates Osteoclast and Osteoblast Activity and Induces Bone Destruction. Cancer Research, 2012, 72, 6393-6402.	0.9	66
69	Role of the microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor cells. Blood, 2012, 120, 3783-3792.	1.4	100
70	Novel phosphatidylinositol 3-kinase inhibitor NVP-BKM120 induces apoptosis in myeloma cells and shows synergistic anti-myeloma activity with dexamethasone. Journal of Molecular Medicine, 2012, 90, 695-706.	3.9	50
71	Th9 cells promote antitumor immune responses in vivo. Journal of Clinical Investigation, 2012, 122, 4160-4171.	8.2	303
72	Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood, 2010, 116, 210-217.	1.4	192

#	Article	IF	CITATIONS
73	Effect of Long-term Storage in TRIzol on Microarray-Based Gene Expression Profiling. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2445-2452.	2.5	45
74	Triggering of Toll-Like Receptor-4 In Human Multiple Myeloma Cells Promotes Proliferation and Alters Cell Responses to Immune and Chemotherapy Drug Attack. Blood, 2010, 116, 1905-1905.	1.4	0
75	Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug–induced apoptosis. Blood, 2009, 114, 3625-3628.	1.4	258
76	Novel Immunotherapies. Cancer Journal (Sudbury, Mass), 2009, 15, 502-510.	2.0	31
77	Myeloma cell line–derived, pooled heat shock proteins as a universal vaccine for immunotherapy of multiple myeloma. Blood, 2009, 114, 3880-3889.	1.4	31
78	Targeting DKK1 for the Immunotherapy of B-Cell Lymphomas Blood, 2009, 114, 465-465.	1.4	0
79	Roles of Idiotype-Specific T Cells in Myeloma Cell Growth and Survival: Th1 and CTL Cells Are Tumoricidal while Th2 Cells Promote Tumor Growth. Cancer Research, 2008, 68, 8456-8464.	0.9	61
80	Atiprimod inhibits the growth of mantle cell lymphoma in vitro and in vivo and induces apoptosis via activating the mitochondrial pathways. Blood, 2007, 109, 5455-5462.	1.4	41
81	Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood, 2007, 110, 1587-1594.	1.4	115
82	Human C-Reactive Protein Binds Activating FcÎ ³ Receptors and Protects Myeloma Tumor Cells from Apoptosis. Cancer Cell, 2007, 12, 252-265.	16.8	112
83	C-Reactive Protein Binds to Fcl ³ RII and Impairs the Differentiation and Function of Dendritic Cells Blood, 2006, 108, 1276-1276.	1.4	0
84	Targeting Heat Shock Proteins for Immunotherapy in Multiple Myeloma: Generation of Myeloma-Specific CTLs Using Dendritic Cells Pulsed with Tumor-Derived gp96. Clinical Cancer Research, 2005, 11, 8808-8815.	7.0	61
85	T-cell-epitope mapping of the idiotypic monoclonal IgG heavy and light chains in multiple myeloma. , 1999, 80, 671-680.		43
86	Pharmacological administration of granulocyte/macrophage-colony-stimulating factor is of significant importance for the induction of a strong humoral and cellular response in patients immunized with recombinant carcinoembryonic antigen. Cancer Immunology, Immunotherapy, 1998, 47, 131-142	4.2	92
87	Anti-idiotypic T-cell activation in multiple myeloma induced by M-component fragments presented by dendritic cells. British Journal of Haematology, 1998, 100, 647-654.	2.5	42
88	Idiotype Immunization Combined With Granulocyte-Macrophage Colony-Stimulating Factor in Myeloma Patients Induced Type I, Major Histocompatibility Complex–Restricted, CD8- and CD4-Specific T-Cell Responses. Blood, 1998, 91, 2459-2466.	1.4	179
89	Current and Future Therapies for Myasthenia Gravis. Drugs and Aging, 1997, 11, 132-139.	2.7	2
90	Idiotype-specific T lymphocytes in monoclonal gammopathies: evidence for the presence of CD4+ and CD8+ subsets. British Journal of Haematology, 1997, 96, 338-345.	2.5	57

#	Article	IF	CITATIONS
91	Idiotype-specific T cells in multiple myeloma:Targets for an immunotherapeutic intervention?. Medical Oncology, 1996, 13, 1-7.	2.5	26
92	Idiotype-specific T cells in multiple myeloma stage I: an evaluation by four different functional tests. British Journal of Haematology, 1995, 89, 110-116.	2.5	61
93	Human Muscle Acetylcholine Receptor Reactive T and B Lymphocytes in Myasthenia Gravis. Annals of the New York Academy of Sciences, 1993, 681, 339-341.	3.8	0