David G Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7911421/publications.pdf

Version: 2024-02-01

255 papers 35,838 citations

91 h-index 176 g-index

269 all docs

269 docs citations

269 times ranked 28250 citing authors

#	Article	IF	CITATIONS
1	Neuroanatomy of autism. Trends in Neurosciences, 2008, 31, 137-145.	8.6	1,308
2	Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. Journal of Comparative Neurology, 1994, 350, 497-533.	1.6	1,064
3	Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 2015, 18, 773-778.	14.8	979
4	A golgi study of cell types in the hilar region of the hippocampus in the rat. Journal of Comparative Neurology, 1978, 182, 851-914.	1.6	835
5	Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. Journal of Comparative Neurology, 1990, 295, 580-623.	1.6	779
6	The Amygdala Is Enlarged in Children But Not Adolescents with Autism; the Hippocampus Is Enlarged at All Ages. Journal of Neuroscience, 2004, 24, 6392-6401.	3.6	727
7	Hippocampal-neocortical interaction: A hierarchy of associativity. Hippocampus, 2000, 10, 420-430.	1.9	702
8	Three Cases of Enduring Memory Impairment after Bilateral Damage Limited to the Hippocampal Formation. Journal of Neuroscience, 1996, 16, 5233-5255.	3.6	688
9	Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature, 1995, 377, 340-344.	27.8	651
10	Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development. Cell, 2014, 158, 263-276.	28.9	637
11	The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 2007, 163, 3-790.	1.4	633
12	Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Journal of Comparative Neurology, 1998, 398, 179-205.	1.6	626
13	Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 2014, 46, 1063-1071.	21.4	583
14	Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience, 2003, 118, 1099-1120.	2.3	570
15	Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. Journal of Comparative Neurology, 1981, 195, 51-86.	1.6	555
16	Perirhinal and postrhinal cortices of the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus, 1995, 5, 390-408.	1.9	516
17	Autism Spectrum Disorders. Neuron, 2000, 28, 355-363.	8.1	452
18	A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. Journal of Comparative Neurology, 1986, 246, 435-458.	1.6	446

#	Article	IF	CITATIONS
19	Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 2017, 49, 515-526.	21.4	443
20	Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. Journal of Comparative Neurology, 1991, 307, 437-459.	1.6	438
21	H. M.'s Medial Temporal Lobe Lesion: Findings from Magnetic Resonance Imaging. Journal of Neuroscience, 1997, 17, 3964-3979.	3.6	407
22	Chapter 1 Chapter Neurons, numbers and the hippocampal network. Progress in Brain Research, 1990, 83, 1-11.	1.4	400
23	Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortex., 1998, 391, 293-321.		393
24	Subcortical afferents to the hippocampal formation in the monkey. Journal of Comparative Neurology, 1980, 189, 573-591.	1.6	377
25	Macaque monkey retrosplenial cortex: II. Cortical afferents. Journal of Comparative Neurology, 2003, 466, 48-79.	1.6	363
26	Neural and behavioral substrates of mood and mood regulation. Biological Psychiatry, 2002, 52, 478-502.	1.3	355
27	Stereological Analysis of Amygdala Neuron Number in Autism. Journal of Neuroscience, 2006, 26, 7674-7679.	3.6	351
28	A comprehensive transcriptional map of primate brain development. Nature, 2016, 535, 367-375.	27.8	341
29	The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biological Psychiatry, 2002, 51, 11-17.	1.3	328
30	Neuroanatomical Assessment of Biological Maturity. Current Biology, 2012, 22, 1693-1698.	3.9	328
31	Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. Journal of Comparative Neurology, 1998, 398, 25-48.	1.6	318
32	Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study. Journal of Comparative Neurology, 2002, 451, 301-323.	1.6	314
33	Insular Cortical Projections to Functional Regions of the Striatum Correlate with Cortical Cytoarchitectonic Organization in the Primate. Journal of Neuroscience, 1997, 17, 9686-9705.	3.6	303
34	Macaque monkey retrosplenial cortex: III. Cortical efferents. Journal of Comparative Neurology, 2007, 502, 810-833.	1.6	292
35	The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. Journal of Neurocytology, 1985, 14, 835-857.	1.5	289
36	A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. Journal of Comparative Neurology, 1995, 362, 17-45.	1.6	289

#	Article	lF	CITATIONS
37	Hippocampal Formation., 1990,, 711-755.		277
38	Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain, 2013, 136, 2825-2835.	7.6	269
39	Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex. Journal of Comparative Neurology, 2002, 447, 394-420.	1.6	267
40	SPARK: A US Cohort of 50,000 Families to Accelerate Autism Research. Neuron, 2018, 97, 488-493.	8.1	265
41	Individual differences in the cognitive and neurobiological consequences of normal aging. Trends in Neurosciences, 1992, 15, 340-345.	8.6	261
42	Cortical Folding Abnormalities in Autism Revealed by Surface-Based Morphometry. Journal of Neuroscience, 2007, 27, 11725-11735.	3.6	253
43	The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. Neurolmage, 2016, 124, 1149-1154.	4.2	251
44	Activation of the Maternal Immune System During Pregnancy Alters Behavioral Development of Rhesus Monkey Offspring. Biological Psychiatry, 2014, 75, 332-341.	1.3	249
45	The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta) Behavioral Neuroscience, 2001, 115, 515-544.	1.2	248
46	The Amygdala, Social Behavior, and Danger Detection. Annals of the New York Academy of Sciences, 2003, 1000, 337-347.	3.8	242
47	Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience, 2001, 106, 653-658.	2.3	229
48	Organization of CA1 projections to the subiculum: A PHA-L analysis in the rat. Hippocampus, 1991, 1, 415-435.	1.9	228
49	Organization of radial glial cells during the development of the rat dentate gyrus. Journal of Comparative Neurology, 1987, 264, 449-479.	1.6	226
50	Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus. Journal of Comparative Neurology, 1995, 356, 288-310.	1.6	223
51	Entorhinal cortex of the rat: Organization of intrinsic connections. , 1998, 398, 49-82.		213
52	Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20195-20200.	7.1	210
53	Quantitative, threeâ€dimensional analysis of granule cell dendrites in the rat dentate gyrus. Journal of Comparative Neurology, 1990, 302, 206-219.	1.6	208
54	The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. Journal of Comparative Neurology, 2005, 486, 295-317.	1.6	204

#	Article	IF	CITATIONS
55	Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain, Behavior, and Immunity, 2008, 22, 806-816.	4.1	203
56	Emerging principles of intrinsic hippocampal organization. Current Opinion in Neurobiology, 1993, 3, 225-229.	4.2	192
57	Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19620-19625.	7.1	192
58	Hippocampal Formation. , 2004, , 635-704.		191
59	Entorhinal Cortex Lesions Disrupt the Relational Organization of Memory in Monkeys. Journal of Neuroscience, 2004, 24, 9811-9825.	3.6	178
60	Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys., 1996, 375, 552-582.		177
61	The Rhesus Monkey Connectome Predicts Disrupted Functional Networks Resulting from Pharmacogenetic Inactivation of the Amygdala. Neuron, 2016, 91, 453-466.	8.1	173
62	Increased Extra-axial Cerebrospinal Fluid in High-Risk Infants Who Later Develop Autism. Biological Psychiatry, 2017, 82, 186-193.	1.3	173
63	Increased Rate of Amygdala Growth in Children Aged 2 to 4 Years With Autism Spectrum Disorders. Archives of General Psychiatry, 2012, 69, 53.	12.3	170
64	Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. Journal of Comparative Neurology, 2000, 421, 52-79.	1.6	167
65	The NIH Toolbox Cognition Battery: Results from a large normative developmental sample (PING) Neuropsychology, 2014, 28, 1-10.	1.3	163
66	Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Experimental Brain Research, 1992, 88, 375-388.	1.5	161
67	Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20089-20094.	7.1	158
68	Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature, 2020, 586, 80-86.	27.8	155
69	How do rhesus monkeys (Macaca mulatta) scan faces in a visual paired comparison task?. Animal Cognition, 2004, 7, 25-36.	1.8	149
70	Cholinergic innervation of the monkey amygdala: An immunohistochemical analysis with antisera to choline acetyltransferase. Journal of Comparative Neurology, 1989, 281, 337-361.	1.6	148
71	The amygdala and autism: implications from non-human primate studies. Genes, Brain and Behavior, 2003, 2, 295-302.	2.2	145
72	Abnormal structure or function of the amygdala is a common component of neurodevelopmental disorders. Neuropsychologia, 2011, 49, 745-759.	1.6	145

#	Article	IF	CITATIONS
73	Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain, Behavior, and Immunity, 2009, 23, 64-74.	4.1	141
74	Recognition memory deficits in a subpopulation of aged monkeys resemble the effects of medial temporal lobe damage. Neurobiology of Aging, 1991, 12, 481-486.	3.1	138
75	Investigation of Neuroanatomical Differences Between Autism and AspergerSyndrome. Archives of General Psychiatry, 2004, 61, 291.	12.3	136
76	EEG Sharp Waves and Sparse Ensemble Unit Activity in the Macaque Hippocampus. Journal of Neurophysiology, 2007, 98, 898-910.	1.8	134
77	Learning and memory. Brain Research Reviews, 1991, 16, 193-220.	9.0	133
78	Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. Journal of Comparative Neurology, 2006, 496, 655-667.	1.6	133
79	Metabolomics as a Tool for Discovery of Biomarkers of Autism Spectrum Disorder in the Blood Plasma of Children. PLoS ONE, 2014, 9, e112445.	2.5	131
80	Hippocampal Lesion Prevents Spatial Relational Learning in Adult Macaque Monkeys. Journal of Neuroscience, 2006, 26, 4546-4558.	3.6	125
81	How Do Monkeys Look at Faces?. Journal of Cognitive Neuroscience, 1997, 9, 611-623.	2.3	123
82	Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3710-3715.	7.1	123
83	Amygdalectomy and responsiveness to novelty in rhesus monkeys (Macaca mulatta): Generality and individual consistency of effects Emotion, 2006, 6, 73-81.	1.8	121
84	Organization of the intrinsic connections of the monkey amygdaloid complex: Projections originating in the lateral nucleus., 1998, 398, 431-458.		115
85	An integrative, multidisciplinary approach to the study of brain–behavior relations in the context of typical and atypical development. Development and Psychopathology, 2002, 14, 499-520.	2.3	115
86	Cortical inputs to the CA1 field of the monkey hippocampus originate from the perirhinal and parahippocampal cortex but not from area TE. Neuroscience Letters, 1990, 115, 43-48.	2.1	114
87	Perirhinal and parahippocampal cortices of the macaque monkey: Intrinsic projections and interconnections. Journal of Comparative Neurology, 2004, 472, 371-394.	1.6	112
88	Projections from the lateral nucleus to the basal nucleus of the amygdala: A light and electron microscopic PHA-L study in the rat. Journal of Comparative Neurology, 1992, 323, 586-601.	1.6	111
89	Quantitative analysis of postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. European Journal of Neuroscience, 2010, 31, 273-285.	2.6	111
90	Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder. Biological Psychiatry, 2019, 85, 345-354.	1.3	111

#	Article	IF	Citations
91	A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Research, 2009, 2, 246-257.	3.8	110
92	Stereological analysis of the rat and monkey amygdala. Journal of Comparative Neurology, 2011, 519, 3218-3239.	1.6	110
93	Brief Report: Methods for Acquiring Structural MRI Data in Very Young Children with Autism Without the Use of Sedation. Journal of Autism and Developmental Disorders, 2008, 38, 1581-1590.	2.7	109
94	Description of brain injury in the amnesic patient N.A. Based on magnetic resonance imaging. Experimental Neurology, 1989, 105, 23-35.	4.1	107
95	In Search of Cellular Immunophenotypes in the Blood of Children with Autism. PLoS ONE, 2011, 6, e19299.	2.5	107
96	Immune Endophenotypes in Children With Autism Spectrum Disorder. Biological Psychiatry, 2017, 81, 434-441.	1.3	105
97	Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nature Communications, 2020, 11 , 4932.	12.8	105
98	Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization. Journal of Comparative Neurology, 2003, 463, 67-91.	1.6	103
99	Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. Journal of Comparative Neurology, 2008, 509, 608-641.	1.6	100
100	Social Neuroscience: Progress and Implications for Mental Health. Perspectives on Psychological Science, 2007, 2, 99-123.	9.0	98
101	Stereological estimation of the number of neurons in the human amygdaloid complex. Journal of Comparative Neurology, 2005, 491, 320-329.	1.6	93
102	Synaptic extensions from the mossy fibers of the fascia dentata. Anatomy and Embryology, 1979, 155, 241-251.	1.5	91
103	Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. Journal of Comparative Neurology, 2000, 418, 457-472.	1.6	90
104	Postnatal development of the hippocampal formation: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2011, 519, 1051-1070.	1.6	87
105	Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus, 2002, 12, 186-205.	1.9	86
106	Functional Connectivity of the Amygdala Is Disrupted in Preschool-Aged Children With Autism Spectrum Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, 817-824.	0.5	86
107	Autoantibodies in Autism Spectrum Disorders (ASD). Annals of the New York Academy of Sciences, 2007, 1107, 79-91.	3.8	85
108	Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain, Behavior, and Immunity, 2013, 30, 61-65.	4.1	85

#	Article	IF	Citations
109	Reduction in Opioid- and Cannabinoid-Induced Antinociception in Rhesus Monkeys after Bilateral Lesions of the Amygdaloid Complex. Journal of Neuroscience, 2001, 21, 8238-8246.	3.6	84
110	Hippocampal Formation. , 2004, , 871-914.		83
111	Stereological Study of Amygdala Clial Populations in Adolescents and Adults with Autism Spectrum Disorder. PLoS ONE, 2014, 9, e110356.	2.5	83
112	The amygdala: is it an essential component of the neural network for social cognition?. Neuropsychologia, 2003, 41, 517-522.	1.6	82
113	The amygdala: is it an essential component of the neural network for social cognition?. Neuropsychologia, 2003, 41, 235-240.	1.6	81
114	Methods for acquiring MRI data in children with autism spectrum disorder and intellectual impairment without the use of sedation. Journal of Neurodevelopmental Disorders, 2016, 8, 20.	3.1	81
115	Postnatal Development of the Primate Hippocampal Formation. Developmental Neuroscience, 2007, 29, 179-192.	2.0	80
116	Macaque monkey retrosplenial cortex: I. Three-dimensional and cytoarchitectonic organization. Journal of Comparative Neurology, 2000, 426, 339-365.	1.6	79
117	Postmortem changes in the neuroanatomical characteristics of the primate brain: Hippocampal formation. Journal of Comparative Neurology, 2009, 512, 27-51.	1.6	77
118	Diffusion properties of major white matter tracts in young, typically developing children. NeuroImage, 2014, 88, 143-154.	4.2	76
119	Clinically Significant Anxiety in Children with Autism Spectrum Disorder and Varied Intellectual Functioning. Journal of Clinical Child and Adolescent Psychology, 2021, 50, 780-795.	3.4	75
120	Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: The hippocampal formation. Journal of Comparative Neurology, 1993, 331, 37-74.	1.6	74
121	Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study. Lancet Psychiatry,the, 2018, 5, 895-904.	7.4	74
122	Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: The amygdaloid complex. Journal of Comparative Neurology, 1993, 331, 14-36.	1.6	72
123	Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4500-4505.	7.1	72
124	Locus coeruleus and intracranial self-stimulation: A cautionary note. Behavioral Biology, 1975, 13, 331-338.	2.2	71
125	Neonatal amygdala or hippocampus lesions influence responsiveness to objects. Developmental Psychobiology, 2010, 52, 487-503.	1.6	70
126	Longitudinal analysis of the developing rhesus monkey brain using magnetic resonance imaging: birth to adulthood. Brain Structure and Function, 2016, 221, 2847-2871.	2.3	70

#	Article	IF	CITATIONS
127	In pursuit of neurophenotypes: The consequences of having autism and a big brain. Autism Research, 2017, 10, 711-722.	3.8	70
128	Hippocampal volume is preserved and fails to predict recognition memory impairment in aged rhesus monkeys (Macaca mulatta). Neurobiology of Aging, 2006, 27, 1405-1415.	3.1	67
129	Memory Lost and Regained Following Bilateral Hippocampal Damage. Journal of Cognitive Neuroscience, 1999, 11, 682-697.	2.3	66
130	Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys. Journal of Comparative Neurology, 2001, 430, 264-281.	1.6	66
131	Acoustic Startle Reflex in Rhesus Monkeys: A Review. Reviews in the Neurosciences, 2008, 19, 171-85.	2.9	66
132	Increased Surface Area, but not Cortical Thickness, in a Subset of Young Boys With Autism Spectrum Disorder. Autism Research, 2016, 9, 232-248.	3.8	66
133	Hippocampal Formation. , 2012, , 896-942.		64
134	Developmental–behavioral profiles in children with autism spectrum disorder and coâ€occurring gastrointestinal symptoms. Autism Research, 2020, 13, 1778-1789.	3.8	64
135	Pleiotropic Mechanisms Indicated for Sex Differences in Autism. PLoS Genetics, 2016, 12, e1006425.	3.5	64
136	Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. Journal of Comparative Neurology, 2002, 451, 45-61.	1.6	63
137	Postnatal development of the amygdala: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2012, 520, 1965-1984.	1.6	63
138	Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors. Brain, Behavior, and Immunity, 2013, 31, 69-75.	4.1	63
139	Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Molecular Autism, 2015, 6, 26.	4.9	62
140	Charting brain growth and aging at high spatial precision. ELife, 2022, 11, .	6.0	61
141	The promise and the pitfalls of autism research: An introductory note for new autism researchers. Brain Research, 2011, 1380, 3-9.	2.2	60
142	Cholinergin innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferasse immunoreactivity in the Macaca fascicularis and Macaca mulatta monkeys. Journal of Comparative Neurology, 1995, 355, 135-170.	1.6	59
143	Role of the Primate Amygdala in Fear-Potentiated Startle: Effects of Chronic Lesions in the Rhesus Monkey. Journal of Neuroscience, 2007, 27, 7386-7396.	3.6	59
144	Introduction: What is where in the medial temporal lobe?. Hippocampus, 1999, 9, 1-6.	1.9	58

#	Article	IF	CITATIONS
145	Intrinsic connections of the macaque monkey hippocampal formation: II. CA3 connections. Journal of Comparative Neurology, 2009, 515, 349-377.	1.6	58
146	Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing andin situhybridization study. European Journal of Neuroscience, 1998, 10, 2924-2933.	2.6	57
147	The Nonhuman Primate Amygdala Is Necessary for the Acquisition but not the Retention of Fear-Potentiated Startle. Biological Psychiatry, 2009, 65, 241-248.	1.3	55
148	Neonatal amygdala lesions result in globally blunted affect in adult rhesus macaques Behavioral Neuroscience, 2011, 125, 848-858.	1.2	55
149	Distribution of somatostatin-like immunoreactivity in the monkey amygdala. Journal of Comparative Neurology, 1989, 284, 294-313.	1.6	54
150	Distribution of calbindin-D28kimmunoreactivity in the monkey temporal lobe: The amygdaloid complex. Journal of Comparative Neurology, 1993, 331, 199-224.	1.6	54
151	Maternal and fetal antibrain antibodies in development and disease. Developmental Neurobiology, 2012, 72, 1327-1334.	3.0	54
152	COVIDâ€19 and Autism Research: Perspectives from Around the Globe. Autism Research, 2020, 13, 844-869.	3.8	54
153	Entorhinal cortex of the monkey: VII. Intrinsic connections. Journal of Comparative Neurology, 2007, 500, 612-633.	1.6	53
154	Spatiotemporal dynamics of the postnatal developing primate brain transcriptome. Human Molecular Genetics, 2015, 24, 4327-4339.	2.9	53
155	The Amygdala, Autism and Anxiety. Novartis Foundation Symposium, 2008, , 177-197.	1.1	52
156	The effects of neonatal 6-hydroxydopamine treatment on morphological plasticity in the dentate gyrus of the rat following entorhinal lesions. Journal of Comparative Neurology, 1980, 194, 171-191.	1.6	50
157	Distribution of reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPHâ€d) cells and fibers in the monkey amygdaloid complex. Journal of Comparative Neurology, 1991, 313, 326-348.	1.6	50
158	Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3985-3990.	7.1	50
159	Persistence of megalencephaly in a subgroup of young boys with autism spectrum disorder. Autism Research, 2016, 9, 1169-1182.	3.8	50
160	A Longitudinal Study of Local Gyrification Index in Young Boys With Autism Spectrum Disorder. Cerebral Cortex, 2019, 29, 2575-2587.	2.9	47
161	Trajectories of Autism Symptom Severity Change During Early Childhood. Journal of Autism and Developmental Disorders, 2021, 51, 227-242.	2.7	47
162	Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders. Brain, Behavior, and Immunity, 2011, 25, 1123-1135.	4.1	46

#	Article	IF	Citations
163	Brief Report: Symptom Onset Patterns and Functional Outcomes in Young Children with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2011, 41, 1727-1732.	2.7	46
164	Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism. Molecular Autism, 2011, 2, 5.	4.9	46
165	Human amnesia and the medial temporal lobe illuminated by neuropsychological and neurohistological findings for patient E.P Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1953-62.	7.1	46
166	A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. Journal of Neurodevelopmental Disorders, 2019, 11, 32.	3.1	46
167	Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. Journal of Comparative Neurology, 2004, 470, 317-329.	1.6	45
168	Spatial relational learning persists following neonatal hippocampal lesions in macaque monkeys. Nature Neuroscience, 2007, 10, 234-239.	14.8	45
169	The Impact of Early Amygdala Damage on Juvenile Rhesus Macaque Social Behavior. Journal of Cognitive Neuroscience, 2013, 25, 2124-2140.	2.3	44
170	Social and Nonsocial Content Differentially Modulates Visual Attention and Autonomic Arousal in Rhesus Macaques. PLoS ONE, 2011, 6, e26598.	2.5	43
171	Anxiety is related to indices of cortical maturation in typically developing children and adolescents. Brain Structure and Function, 2016, 221, 3013-3025.	2.3	43
172	Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/fornix transection. , 1996, 375, 527-551.		41
173	Bilateral neurotoxic amygdala lesions in rhesus monkeys (Macaca mulatta): Consistent pattern of behavior across different social contexts Behavioral Neuroscience, 2008, 122, 251-266.	1.2	40
174	Animal models of autism spectrum disorders: Information for neurotoxicologists. NeuroToxicology, 2009, 30, 811-821.	3.0	40
175	Understanding Hippocampal Development in Young Children With Autism Spectrum Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2020, 59, 1069-1079.	0.5	39
176	The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. Journal of Comparative Neurology, 2021, 529, 828-852.	1.6	39
177	Morphological analyses of the brains of behaviorally characterized aged nonhuman primates. Neurobiology of Aging, 1993, 14, 671-672.	3.1	38
178	Hippocampal size positively correlates with verbal IQ in male children. Hippocampus, 2007, 17, 486-493.	1.9	37
179	A Metabolomics Approach to Screening for Autism Risk in the Children's Autism Metabolome Project. Autism Research, 2020, 13, 1270-1285.	3.8	37
180	The effects of neonatal amygdala or hippocampus lesions on adult social behavior. Behavioural Brain Research, 2017, 322, 123-137.	2.2	36

#	Article	IF	Citations
181	What will my child's future hold? phenotypes of intellectual development in 2–8â€yearâ€olds with autism spectrum disorder. Autism Research, 2018, 11, 121-132.	3.8	36
182	A hippocampal interneuron observed in the inferior region. Brain Research, 1977, 124, 225-236.	2.2	35
183	Magnetic resonance imaging of the post-mortem autistic brain. Journal of Autism and Developmental Disorders, 2001, 31, 561-568.	2.7	35
184	Intrinsic connections of the macaque monkey hippocampal formation: I. Dentate gyrus. Journal of Comparative Neurology, 2008, 511, 497-520.	1.6	35
185	Effects of neonatal amygdala or hippocampus lesions on resting brain metabolism in the macaque monkey: A microPET imaging study. NeuroImage, 2008, 39, 832-846.	4.2	35
186	A Longitudinal Study of White Matter Development in Relation to Changes in Autism Severity Across Early Childhood. Biological Psychiatry, 2021, 89, 424-432.	1.3	34
187	Macaque Cardiac Physiology Is Sensitive to the Valence of Passively Viewed Sensory Stimuli. PLoS ONE, 2013, 8, e71170.	2.5	33
188	Longitudinal Evaluation of Cerebral Growth Across Childhood in Boys and Girls With Autism Spectrum Disorder. Biological Psychiatry, 2021, 90, 286-294.	1.3	33
189	Editorial: Time to give up on Autism Spectrum Disorder?. Autism Research, 2017, 10, 10-14.	3.8	32
190	High Psychopathology Subgroup in Young Children With Autism: Associations With Biological Sex and Amygdala Volume. Journal of the American Academy of Child and Adolescent Psychiatry, 2020, 59, 1353-1363.e2.	0.5	32
191	Conserved Subcortical and Divergent Cortical Expression of Proteins Encoded by Orthologs of the Autism Risk Gene MET. Cerebral Cortex, 2011, 21, 1613-1626.	2.9	31
192	Assessing hippocampal development and language in early childhood: Evidence from a new application of the Automatic Segmentation Adapter Tool. Human Brain Mapping, 2015, 36, 4483-4496.	3.6	31
193	Neural correlates of language variability in preschoolâ€aged boys with autism spectrum disorder. Autism Research, 2017, 10, 1107-1119.	3.8	30
194	Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. Journal of Neuroscience, 2021, 41, 9971-9987.	3.6	29
195	Gaps in Current Autism Research: The Thoughts of the <i>Autism Research</i> Editorial Board and Associate Editors. Autism Research, 2019, 12, 700-714.	3.8	28
196	Offering to Share: How to Put Heads Together in Autism Neuroimaging. Journal of Autism and Developmental Disorders, 2008, 38, 2-13.	2.7	27
197	Interest in infants by female rhesus monkeys with neonatal lesions of the amygdala or hippocampus. Neuroscience, 2009, 162, 881-891.	2.3	27
198	Dyslexia and language impairment associated genetic markers influence cortical thickness and white matter in typically developing children. Brain Imaging and Behavior, 2016, 10, 272-282.	2.1	27

#	Article	lF	CITATIONS
199	Postnatal development of the hippocampus in the Rhesus macaque (<i>Macaca mulatta</i>): A longitudinal magnetic resonance imaging study. Hippocampus, 2014, 24, 794-807.	1.9	26
200	Adult social behavior with familiar partners following neonatal amygdala or hippocampus damage Behavioral Neuroscience, 2015, 129, 339-350.	1.2	25
201	Selective lesion of the hippocampus increases the differentiation of immature neurons in the monkey amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14420-14425.	7.1	25
202	An analysis of entorhinal cortex projections to the dentate gyrus, hippocampus, and subiculum of the neonatal macaque monkey. Journal of Comparative Neurology, 2014, 522, 1485-1505.	1.6	24
203	Early amygdala or hippocampus damage influences adolescent female social behavior during group formation Behavioral Neuroscience, 2017, 131, 68-82.	1.2	24
204	The amygdala, autism and anxiety. Novartis Foundation Symposium, 2003, 251, 177-87; discussion 187-97, 281-97.	1.1	24
205	Distribution of GABAergic cells and fibers in the hippocampal formation of the Macaque monkey: An immunohistochemical and in situ hybridization study. Journal of Comparative Neurology, 1999, 408, 237-271.	1.6	21
206	Sex Differences in the Amygdala Resting-State Connectome of Children With Autism Spectrum Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 320-329.	1.5	21
207	Alterations in Retrotransposition, Synaptic Connectivity, and Myelination Implicated by Transcriptomic Changes Following Maternal Immune Activation in Nonhuman Primates. Biological Psychiatry, 2021, 89, 896-910.	1.3	21
208	The Autism Phenome Project: Toward Identifying Clinically Meaningful Subgroups of Autism. Frontiers in Neuroscience, 2021, 15, 786220.	2.8	21
209	Identifying autism symptom severity trajectories across childhood. Autism Research, 2022, 15, 687-701.	3.8	21
210	Life and Death of Immature Neurons in the Juvenile and Adult Primate Amygdala. International Journal of Molecular Sciences, 2021, 22, 6691.	4.1	19
211	Anterior Cingulate Cortex Ablation Disrupts Affective Vigor and Vigilance. Journal of Neuroscience, 2021, 41, 8075-8087.	3.6	19
212	Association of Amygdala Development With Different Forms of Anxiety in Autism Spectrum Disorder. Biological Psychiatry, 2022, 91, 977-987.	1.3	18
213	Maternal Interleukin-6 Is Associated With Macaque Offspring Amygdala Development and Behavior. Cerebral Cortex, 2020, 30, 1573-1585.	2.9	17
214	Nonphosphorylated highâ€molecularâ€weight neurofilament expression suggests early maturation of the monkey subiculum. Hippocampus, 2004, 14, 797-801.	1.9	15
215	Brief Report: Antibodies Reacting to Brain Tissue in Basque Spanish Children with Autism Spectrum Disorder and Their Mothers. Journal of Autism and Developmental Disorders, 2014, 44, 459-465.	2.7	14
216	Disrupted fornix integrity in children with chromosome 22q11.2 deletion syndrome. Psychiatry Research - Neuroimaging, 2015, 232, 106-114.	1.8	14

#	Article	IF	CITATIONS
217	Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. Journal of Comparative Neurology, 1998, 398, 25-48.	1.6	14
218	A double labeling technique using WGA-apoHRP-gold as a retrograde tracer and non-isotopic in situ hybridization histochemistry for the detection of mRNA. Journal of Neuroscience Methods, 2000, 101, 9-17.	2.5	12
219	Reactive plasticity in the dentate gyrus following bilateral entorhinal cortex lesions in cynomolgus monkeys. Journal of Comparative Neurology, 2007, 502, 192-201.	1.6	12
220	Fear Potentiated Startle in Children With Autism Spectrum Disorder: Association With Anxiety Symptoms and Amygdala Volume. Autism Research, 2021, 14, 450-463.	3.8	12
221	Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice. JCI Insight, 2021, 6, .	5.0	12
222	Autism BrainNet. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 31-39.	1.8	11
223	Differential Altered Auditory Eventâ€Related Potential Responses in Young Boys on the Autism Spectrum With and Without Disproportionate Megalencephaly. Autism Research, 2019, 12, 1236-1250.	3.8	11
224	Altered Development of Amygdala-Connected Brain Regions in Males and Females with Autism. Journal of Neuroscience, 2022, 42, 6145-6155.	3.6	11
225	Comparative analysis of the dendritic organization of principal neurons in the lateral and central nuclei of the rhesus macaque and rat amygdala. Journal of Comparative Neurology, 2014, 522, 689-716.	1.6	10
226	Stereological analysis of the rhesus monkey entorhinal cortex. Journal of Comparative Neurology, 2018, 526, 2115-2132.	1.6	10
227	Selective changes in foraging behavior following bilateral neurotoxic amygdala lesions in rhesus monkeys Behavioral Neuroscience, 2010, 124, 761-772.	1.2	9
228	Amygdala growth from youth to adulthood in the macaque monkey. Journal of Comparative Neurology, 2019, 527, 3034-3045.	1.6	9
229	A Semi-Automated Pipeline for the Segmentation of Rhesus Macaque Hippocampus: Validation across a Wide Age Range. PLoS ONE, 2014, 9, e89456.	2.5	8
230	Structural differences in the hippocampus and amygdala of behaviorally inhibited macaque monkeys. Hippocampus, 2021, 31, 858-868.	1.9	8
231	Chemical neuroanatomy of the hippocampal formation and the perirhinal and parahippocampal cortices. Handbook of Chemical Neuroanatomy, 1999, , 285-401.	0.3	7
232	Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys. Brain Structure and Function, 2017, 222, 3899-3914.	2.3	6
233	Postnatal development of the entorhinal cortex: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2020, 528, 2308-2332.	1.6	6
234	Neuropsychological and neuropathological observations of a long-studied case of memory impairment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29883-29893.	7.1	5

#	Article	IF	CITATIONS
235	Altered Gray-White Matter Boundary Contrast in Toddlers at Risk for Autism Relates to Later Diagnosis of Autism Spectrum Disorder. Frontiers in Neuroscience, 2021, 15, 669194.	2.8	5
236	Hippocampalâ€neocortical interaction: A hierarchy of associativity. Hippocampus, 2000, 10, 420-430.	1.9	5
237	Sex-Dependent Structure of Socioemotional Salience, Executive Control, and Default Mode Networks in Preschool-Aged Children with Autism. NeuroImage, 2022, , 119252.	4.2	4
238	Neuronal dendritic neoformations and neuroglial alterations in the senile dog (translation of) Tj ETQq0 0 0 rgBT /ula Universidad de Madrid, Tomo XII, pp. 39–53, 1914. Behavioral Biology, 1978, 24, 123-140.	Overlock 1 2.2	10 Tf 50 627 2
239	Cognitive neuroscience. Current Opinion in Neurobiology, 1995, 5, 137-140.	4.2	2
240	Introduction to commentary by Laurent Mottron and responses. Autism Research, 2021, 14, 2212-2212.	3.8	2
241	Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. Journal of Comparative Neurology, 1996, 375, 552-582.	1.6	2
242	Neuroscience of Autism., 0,, 379-392.		2
243	Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study. European Journal of Neuroscience, 1998, 10, 2924-2933.	2.6	2
244	Social housing status impacts rhesus monkeys' affective responding in classic threat processing tasks. Scientific Reports, 2022, 12, 4140.	3.3	2
245	The Neurobiology of Primate Social Behavior. , 2011, , .		1
246	Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study. , 0, .		1
247	Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus., 1998, 398, 25.		1
248	Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat., 1998, 398, 179.		1
249	Hippocampal-neocortical interaction: A hierarchy of associativity., 2000, 10, 420.		1
250	Often Undiagnosed but Treatable: Case Vignettes and Clinical Considerations for Assessing Anxiety Disorders in Youth with Autism Spectrum Disorder and Intellectual Disability. Evidence-Based Practice in Child and Adolescent Mental Health, 2022, 7, 24-40.	1.0	1
251	Nonhuman Primate Models for Autism Spectrum Disorders. , 2013, , 379-390.		1
252	Autism BrainNet: A Collaboration Between Medical Examiners, Pathologists, Researchers, and Families to Advance the Understanding and Treatment of Autism Spectrum Disorder. Archives of Pathology and Laboratory Medicine, 2021, 145, 494-501.	2.5	1

#	Article	IF	CITATIONS
253	Reminiscence. Journal of Comparative Neurology, 2003, 463, 66-66.	1.6	O
254	Reply to: Lack of Diagnostic Utility of "Amino Acid Dysregulation Metabotypes― Biological Psychiatry, 2019, 85, e43-e44.	1.3	0
255	Chapter 10 Macrocephaly and megalencephaly in autism spectrum disorder. , 2016, , 171-188.		O