Laszlo Nagy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/791104/publications.pdf

Version: 2024-02-01

177	18,788	54	134
papers	citations	h-index	g-index
185	185	185	20247
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A growth factor–expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. Journal of Experimental Medicine, 2022, 219, .	8.5	31
2	An open chat with… Laszlo Nagy. FEBS Open Bio, 2022, , .	2.3	0
3	Evidence of islet CADM1-mediated immune cell interactions during human type 1 diabetes. JCI Insight, 2022, 7, .	5.0	7
4	The Feasibility of Baroreflex Sensitivity Measurements in Heart Failure Subjects: The Role of Slowâ€patterned Breathing. Clinical Physiology and Functional Imaging, 2022, , .	1.2	0
5	Bacteria may be in the liver, but the jury is still out. Journal of Clinical Investigation, 2022, 132, .	8.2	2
6	Omecamtiv mecarbil evokes diastolic dysfunction and leads to periodic electromechanical alternans. Basic Research in Cardiology, 2021, 116, 24.	5.9	15
7	Myeloid cell diversification during regenerative inflammation: Lessons from skeletal muscle. Seminars in Cell and Developmental Biology, 2021, 119, 89-100.	5.0	10
8	Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression. Scientific Reports, 2021, 11, 10435.	3.3	5
9	Diet-dependent natriuretic peptide receptor C expression in adipose tissue is mediated by PPARγ via long-range distal enhancers. Journal of Biological Chemistry, 2021, 297, 100941.	3.4	10
10	Transcriptional repression shapes the identity and function of tissue macrophages. FEBS Open Bio, 2021, 11, 3218-3229.	2.3	8
11	Oxidation of Hemoglobin Drives a Proatherogenic Polarization of Macrophages in Human Atherosclerosis. Antioxidants and Redox Signaling, 2021, 35, 917-950.	5.4	16
12	Sympathetic activation in heart failure with reduced and mildly reduced ejection fraction: the role of aetiology. ESC Heart Failure, 2021, 8, 5112-5120.	3.1	2
13	Global Run-on Sequencing (GRO-Seq). Methods in Molecular Biology, 2021, 2351, 25-39.	0.9	3
14	Simultaneous Mapping of Molecular Proximity and Comobility Reveals Agonist-Enhanced Dimerization and DNA Binding of Nuclear Receptors. Analytical Chemistry, 2020, 92, 2207-2215.	6.5	8
15	Uninterrupted Dabigatran Administration Provides Greater Inhibition against Intracardiac Activation of Hemostasis as Compared to Vitamin K Antagonists during Cryoballoon Catheter Ablation of Atrial Fibrillation. Journal of Clinical Medicine, 2020, 9, 3050.	2.4	2
16	The transcription factor EGR2 is the molecular linchpin connecting STAT6 activation to the late, stable epigenomic program of alternative macrophage polarization. Genes and Development, 2020, 34, 1474-1492.	5.9	38
17	Investigation of de novo mutations in a schizophrenia case-parent trio by induced pluripotent stem cell-based in vitro disease modeling: convergence of schizophrenia- and autism-related cellular phenotypes. Stem Cell Research and Therapy, 2020, 11, 504.	5.5	12
18	Motif grammar: The basis of the language of gene expression. Computational and Structural Biotechnology Journal, 2020, 18, 2026-2032.	4.1	12

#	Article	IF	CITATIONS
19	Unorthodox Transcriptional Mechanisms of Lipid-Sensing Nuclear Receptors in Macrophages: Are We Opening a New Chapter?. Frontiers in Endocrinology, 2020, 11, 609099.	3.5	3
20	Agonist binding directs dynamic competition among nuclear receptors for heterodimerization with retinoid X receptor. Journal of Biological Chemistry, 2020, 295, 10045-10061.	3.4	24
21	Myeloid ALX/FPR2 regulates vascularization following tissue injury. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14354-14364.	7.1	35
22	Association between Foramen Size and Febrile Seizure Status in the Pediatric Population: A Two-Center Retrospective Analysis. Journal of Neurosciences in Rural Practice, 2020, 11, 430-435.	0.8	2
23	Intracardiac Fibrinolysis and Endothelium Activation Related to Atrial Fibrillation Ablation with Different Techniques. Cardiology Research and Practice, 2020, 2020, 1-8.	1.1	5
24	Unraveling the Hierarchy of <i>cis</i> and <i>trans</i> Factors That Determine the DNA Binding by Peroxisome Proliferator-Activated Receptor <i>\hat{I}^3</i> Molecular and Cellular Biology, 2020, 40, .	2.3	5
25	Glucocorticoids counteract hypertrophic effects of myostatin inhibition in dystrophic muscle. JCI Insight, 2020, 5, .	5.0	19
26	Three-Dimensional Echocardiographic Method for the Visualization and Assessment of Specific Parameters of the Pulmonary Veins. Journal of Visualized Experiments, 2020, , .	0.3	2
27	The BACH1â€"HMOX1 Regulatory Axis Is Indispensable for Proper Macrophage Subtype Specification and Skeletal Muscle Regeneration. Journal of Immunology, 2019, 203, 1532-1547.	0.8	22
28	Identification and characterization of a novel anti-inflammatory lipid isolated from Mycobacterium vaccae, a soil-derived bacterium with immunoregulatory and stress resilience properties. Psychopharmacology, 2019, 236, 1653-1670.	3.1	28
29	Signal Integration of IFN-I and IFN-II With TLR4 Involves Sequential Recruitment of STAT1-Complexes and NFI®B to Enhance Pro-inflammatory Transcription. Frontiers in Immunology, 2019, 10, 1253.	4.8	34
30	Gene expression analysis of vascular pathophysiology related to anti-TNF treatment in rheumatoid arthritis. Arthritis Research and Therapy, 2019, 21, 94.	3.5	8
31	Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration. Nature Immunology, 2019, 20, 626-636.	14.5	108
32	Labelled regulatory elements are pervasive features of the macrophage genome and are dynamically utilized by classical and alternative polarization signals. Nucleic Acids Research, 2019, 47, 2778-2792.	14.5	14
33	Hepatocyte-Macrophage Acetoacetate Shuttle Protects against Tissue Fibrosis. Cell Metabolism, 2019, 29, 383-398.e7.	16.2	87
34	The IL-4/STAT6/PPARÎ ³ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages. Nucleic Acids Research, 2018, 46, 4425-4439.	14.5	47
35	Liver X Receptor Nuclear Receptors Are Transcriptional Regulators of Dendritic Cell Chemotaxis. Molecular and Cellular Biology, 2018, 38, .	2.3	30
36	A Pharmacogenetic Approach to the Treatment of Patients With <i>PPARG</i> Mutations. Diabetes, 2018, 67, 1086-1092.	0.6	30

#	Article	IF	Citations
37	The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages. Immunity, 2018, 48, 75-90.e6.	14.3	185
38	Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nature Medicine, 2018, 24, 304-312.	30.7	171
39	Consumption of conjugated linoleic acid (CLA)-supplemented diet during colitis development ameliorates gut inflammation without causing steatosis in mice. Journal of Nutritional Biochemistry, 2018, 57, 238-245.	4.2	5
40	Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 14-28.	1.9	8
41	RXR heterodimers orchestrate transcriptional control of neurogenesis and cell fate specification. Molecular and Cellular Endocrinology, 2018, 471, 51-62.	3.2	21
42	Extensive and functional overlap of the STAT6 and RXR cistromes in the active enhancer repertoire of human CD14+ monocyte derived differentiating macrophages. Molecular and Cellular Endocrinology, 2018, 471, 63-74.	3.2	14
43	The Nuclear Receptor PPAR \hat{I}^3 Controls Progressive Macrophage Polarization as a Ligand-Insensitive Epigenomic Ratchet of Transcriptional Memory. Immunity, 2018, 49, 615-626.e6.	14.3	128
44	Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. Journal of Neuroscience, 2018, 38, 7683-7700.	3.6	31
45	In vivo GDF3 administration abrogates aging related muscle regeneration delay following acute sterile injury. Aging Cell, 2018, 17, e12815.	6.7	28
46	Interactions of retinoids with the ABC transporters P-glycoprotein and Breast Cancer Resistance Protein. Scientific Reports, 2017, 7, 41376.	3.3	24
47	Leukocyte Overexpression of Intracellular NAMPT Attenuates Atherosclerosis by Regulating PPARÎ ³ -Dependent Monocyte Differentiation and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1157-1167.	2.4	31
48	MSTO 1 is a cytoplasmic proâ€mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans. EMBO Molecular Medicine, 2017, 9, 967-984.	6.9	53
49	Commentaries on Viewpoint: Loopomics: a new functional approach to life. Journal of Applied Physiology, 2017, 123, 1014-1015.	2.5	0
50	Titin isoforms are increasingly protected against oxidative modifications in developing rat cardiomyocytes. Free Radical Biology and Medicine, 2017, 113, 224-235.	2.9	11
51	Nucleosome stability measured in situ by automated quantitative imaging. Scientific Reports, 2017, 7, 12734.	3.3	15
52	Immunity meets metabolism and then they start talking. FEBS Letters, 2017, 591, 2957-2958.	2.8	0
53	Retinoid X receptor suppresses a metastasis-promoting transcriptional program in myeloid cells via a ligand-insensitive mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10725-10730.	7.1	24
54	<i>In situ</i> macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. Journal of Physiology, 2017, 595, 5815-5842.	2.9	37

#	Article	IF	Citations
55	Nuclear Receptors in Immune Function. , 2016, , 146-156.		O
56	Motif oriented high-resolution analysis of ChIP-seq data reveals the topological order of CTCF and cohesin proteins on DNA. BMC Genomics, 2016 , 17 , 637 .	2.8	25
57	Is the Mouse a Good Model of Human PPARγ-Related Metabolic Diseases?. International Journal of Molecular Sciences, 2016, 17, 1236.	4.1	14
58	ORM-3819 promotes cardiac contractility through Ca2+ sensitization in combination with selective PDE III inhibition, a novel approach to inotropy. European Journal of Pharmacology, 2016, 775, 120-129.	3. 5	5
59	Highly Dynamic Transcriptional Signature of Distinct Macrophage Subsets during Sterile Inflammation, Resolution, and Tissue Repair. Journal of Immunology, 2016, 196, 4771-4782.	0.8	147
60	OCT4 Acts as an Integrator of Pluripotency and Signal-Induced Differentiation. Molecular Cell, 2016, 63, 647-661.	9.7	66
61	Macrophage PPAR \hat{I}^3 , a Lipid Activated Transcription Factor Controls the Growth Factor GDF3 and Skeletal Muscle Regeneration. Immunity, 2016, 45, 1038-1051.	14.3	134
62	Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation. Journal of Visualized Experiments, 2016, , .	0.3	3
63	Decreased peroxisome proliferator-activated receptor \hat{l}^3 level and signalling in sebaceous glands of patients with acne vulgaris. Clinical and Experimental Dermatology, 2016, 41, 547-551.	1.3	17
64	The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Medicine, 2016, 8, 63.	8.2	35
65	Genomewide effects of peroxisome proliferatorâ€activated receptor gamma in macrophages and dendritic cells – revealing complexity through systems biology. European Journal of Clinical Investigation, 2015, 45, 964-975.	3.4	11
66	9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice. PLoS Genetics, 2015, 11, e1005213.	3.5	98
67	Combination of IgG <i>N</i> â€glycomics and corresponding transcriptomics data to identify antiâ€₹NFâ€Î± treatment responders in inflammatory diseases. Electrophoresis, 2015, 36, 1330-1335.	2.4	12
68	Differentiation of Adipocytes in Monolayer from Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1341, 407-415.	0.9	2
69	PRMT1 and PRMT8 Regulate Retinoic Acid-Dependent Neuronal Differentiation with Implications to Neuropathology. Stem Cells, 2015, 33, 726-741.	3.2	47
70	Ligand Binding Shifts Highly Mobile Retinoid X Receptor to the Chromatin-Bound State in a Coactivator-Dependent Manner, as Revealed by Single-Cell Imaging. Molecular and Cellular Biology, 2014, 34, 1234-1245.	2.3	33
71	PPARÎ ³ activation but not PPARÎ ³ haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors. Cardiovascular Diabetology, 2014, 13, 150.	6.8	13
72	Inotropes and Inodilators for Acute Heart Failure. Journal of Cardiovascular Pharmacology, 2014, 64, 199-208.	1.9	19

#	Article	IF	CITATIONS
73	Measuring Expression Levels of Small Regulatory RNA Molecules from Body Fluids and Formalin-Fixed, Paraffin-Embedded Samples. Methods in Molecular Biology, 2014, 1182, 105-119.	0.9	7
74	The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages. Genes and Development, 2014, 28, 1562-1577.	5.9	85
75	PPARγ-Mediated and Arachidonic Acid–Dependent Signaling Is Involved in Differentiation and Lipid Production of Human Sebocytes. Journal of Investigative Dermatology, 2014, 134, 910-920.	0.7	77
76	The intriguing complexities of mammalian gene regulation: How to link enhancers to regulated genes. Are we there yet?. FEBS Letters, 2014, 588, 2379-2391.	2.8	21
77	Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid. Stem Cell Research, 2014, 13, 88-97.	0.7	36
78	Causes and Pathophysiology of Heart Failure with Preserved Ejection Fraction. Heart Failure Clinics, 2014, 10, 389-398.	2.1	23
79	Mapping the Genomic Binding Sites of the Activated Retinoid X Receptor in Murine Bone Marrow-Derived Macrophages Using Chromatin Immunoprecipitation Sequencing. Methods in Molecular Biology, 2014, 1204, 15-24.	0.9	18
80	PPARÂ; activation but not PPARÂ; haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors. Cardiovascular Diabetology, 2014, 13, 150.	6.8	11
81	Pro-inflammatory cytokines negatively regulate PPARγ mediated gene expression in both human and murine macrophages via multiple mechanisms. Immunobiology, 2013, 218, 1336-1344.	1.9	33
82	A novel method to predict regulatory regions based on histone mark landscapes in macrophages. Immunobiology, 2013, 218, 1416-1427.	1.9	18
83	Pharmacogenetics and pharmacogenomics in rheumatology. Immunologic Research, 2013, 56, 325-333.	2.9	22
84	Nuclear hormone receptors are powerful regulators of stem cell maintenance, differentiation, metabolism and function. Seminars in Cell and Developmental Biology, 2013, 24, 669.	5.0	1
85	The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. Journal of Allergy and Clinical Immunology, 2013, 132, 264-286.	2.9	136
86	Nuclear receptors as regulators of stem cell and cancer stem cell metabolism. Seminars in Cell and Developmental Biology, 2013, 24, 716-723.	5.0	7
87	PPAR \hat{I}^3 needs a helping hand to make fat. Cell Death and Differentiation, 2013, 20, 1599-1600.	11.2	1
88	Reprogramming of lysosomal gene expression by interleukin-4 and Stat6. BMC Genomics, 2013, 14, 853.	2.8	18
89	Hmgb1 can facilitate activation of the matrilin-1 gene promoter by Sox9 and L-Sox5/Sox6 in early steps of chondrogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1075-1091.	1.9	10
90	Tissue LyC6â^' Macrophages Are Generated in the Absence of Circulating LyC6â^' Monocytes and Nur77 in a Model of Muscle Regeneration. Journal of Immunology, 2013, 191, 5695-5701.	0.8	80

#	Article	IF	CITATIONS
91	Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Molecular and Cellular Endocrinology, 2013, 368, 85-98.	3.2	23
92	RDH10, RALDH2, and CRABP2 are required components of PPARÎ ³ -directed ATRA synthesis and signaling in human dendritic cells. Journal of Lipid Research, 2013, 54, 2458-2474.	4.2	26
93	Peripheral blood derived gene panels predict response to infliximab in rheumatoid arthritis and Crohn's disease. Genome Medicine, 2013, 5, 59.	8.2	38
94	A7.20â€Response to Infliximab Therapy can be Predicted using Distinct, Non-Overlapping Gene Panels of Peripheral Blood Gene Expression in Rheumatoid Arthritis and Crohn's Disease. Annals of the Rheumatic Diseases, 2013, 72, A55.1-A55.	0.9	1
95	Genome Wide Mapping Reveals PDE4B as an IL-2 Induced STAT5 Target Gene in Activated Human PBMCs and Lymphoid Cancer Cells. PLoS ONE, 2013, 8, e57326.	2.5	10
96	A Versatile Method to Design Stem-Loop Primer-Based Quantitative PCR Assays for Detecting Small Regulatory RNA Molecules. PLoS ONE, 2013, 8, e55168.	2.5	96
97	Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed selectively in tissue granulomas and foam cells. Laboratory Investigation, 2012, 92, 345-361.	3.7	18
98	Identification of novel markers of alternative activation and potential endogenous PPARγ ligand production mechanisms in human IL-4 stimulated differentiating macrophages. Immunobiology, 2012, 217, 1301-1314.	1.9	41
99	Peripheral Blood Gene Expression and IgG Glycosylation Profiles as Markers of Tocilizumab Treatment in Rheumatoid Arthritis. Journal of Rheumatology, 2012, 39, 916-928.	2.0	25
100	Ethanol increases phosphateâ€mediated mineralization and osteoblastic transformation of vascular smooth muscle cells. Journal of Cellular and Molecular Medicine, 2012, 16, 2219-2226.	3.6	10
101	The triad of success in personalised medicine: pharmacogenomics, biotechnology and regulatory issues from a Central European perspective. New Biotechnology, 2012, 29, 741-750.	4.4	5
102	Nuclear Hormone Receptors Enable Macrophages and Dendritic Cells to Sense Their Lipid Environment and Shape Their Immune Response. Physiological Reviews, 2012, 92, 739-789.	28.8	195
103	Would eating carrots protect your liver? A new role involving <scp>NKT</scp> cells for retinoic acid in hepatitis. European Journal of Immunology, 2012, 42, 1677-1680.	2.9	7
104	Association of peroxisome proliferator-activated receptor gamma polymorphisms with inflammatory bowel disease in a Hungarian cohort. Inflammatory Bowel Diseases, 2012, 18, 472-479.	1.9	13
105	Chronic Obstructive Pulmonary Disease-Specific Gene Expression Signatures of Alveolar Macrophages as well as Peripheral Blood Monocytes Overlap and Correlate with Lung Function. Respiration, 2011, 81, 499-510.	2.6	46
106	PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1007-1022.	3.8	693
107	Gene expression profiles in peripheral blood for the diagnosis of autoimmune diseases. Trends in Molecular Medicine, 2011, 17, 223-233.	6.7	50
108	Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nature Structural and Molecular Biology, 2011, 18, 177-184.	8.2	156

#	Article	IF	CITATIONS
109	Live-cell fluorescence correlation spectroscopy dissects the role of coregulator exchange and chromatin binding in retinoic acid receptor mobility. Journal of Cell Science, 2011, 124, 3631-3642.	2.0	41
110	Peroxisome Proliferator-Activated Receptor \hat{I}^3 -Regulated Cathepsin D Is Required for Lipid Antigen Presentation by Dendritic Cells. Journal of Immunology, 2011, 187, 240-247.	0.8	21
111	Activation of retinoic acid receptor signaling coordinates lineage commitment of spontaneously differentiating mouse embryonic stem cells in embryoid bodies. FEBS Letters, 2010, 584, 3123-3130.	2.8	32
112	STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPARÎ ³ -Regulated Gene Expression in Macrophages and Dendritic Cells. Immunity, 2010, 33, 699-712.	14.3	352
113	Analyses of association between PPAR gamma and EPHX1 polymorphisms and susceptibility to COPD in a Hungarian cohort, a case-control study. BMC Medical Genetics, 2010, 11, 152.	2.1	23
114	Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Medical Genomics, 2010, 3, 15.	1.5	100
115	Factor XIII-A is involved in the regulation of gene expression in alternatively activated human macrophages. Thrombosis and Haemostasis, 2010, 104, 709-717.	3.4	32
116	Activation of Liver X Receptor Sensitizes Human Dendritic Cells to Inflammatory Stimuli. Journal of Immunology, 2010, 184, 5456-5465.	0.8	65
117	Research Resource: Transcriptome Profiling of Genes Regulated by RXR and Its Permissive and Nonpermissive Partners in Differentiating Monocyte-Derived Dendritic Cells. Molecular Endocrinology, 2010, 24, 2218-2231.	3.7	67
118	1,25-Dihydroxyvitamin D3 Is an Autonomous Regulator of the Transcriptional Changes Leading to a Tolerogenic Dendritic Cell Phenotype. Journal of Immunology, 2009, 182, 2074-2083.	0.8	209
119	<i>Mycobacterium bovis</i> Bacillus Calmette-Guelin Infection Induces TLR2-Dependent Peroxisome Proliferator-Activated Receptor γ Expression and Activation: Functions in Inflammation, Lipid Metabolism, and Pathogenesis. Journal of Immunology, 2009, 183, 1337-1345.	0.8	148
120	Transient Receptor Potential Vanilloid-1 Signaling as a Regulator of Human Sebocyte Biology. Journal of Investigative Dermatology, 2009, 129, 329-339.	0.7	76
121	Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Molecular Aspects of Medicine, 2009, 30, 134-152.	6.4	69
122	Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function. EMBO Journal, 2008, 27, 2353-2362.	7.8	78
123	Structural basis for the activation of PPAR \hat{I}^3 by oxidized fatty acids. Nature Structural and Molecular Biology, 2008, 15, 924-931.	8.2	380
124	Nuclear receptors, transcription factors linking lipid metabolism and immunity: the case of peroxisome proliferatorâ€activated receptor gamma. European Journal of Clinical Investigation, 2008, 38, 695-707.	3.4	55
125	Of Vitruvian mice and men. FEBS Letters, 2008, 582, 1-1.	2.8	2
126	The many faces of PPARÎ ³ : Anti-inflammatory by any means?. Immunobiology, 2008, 213, 789-803.	1.9	140

#	Article	IF	CITATIONS
127	Functional ABCG1 expression induces apoptosis in macrophages and other cell types. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2378-2387.	2.6	27
128	Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes ⟨i⟩via⟨ i⟩ cannabinoid receptorâ€2â€mediated signaling. FASEB Journal, 2008, 22, 3685-3695.	0.5	125
129	Potential Therapeutic Use of PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> -Programed Human Monocyte-Derived Dendritic Cells in Cancer Vaccination Therapy. PPAR Research, 2008, 2008, 1-10	2.4	2
130	Ribonucleoprotein-masked nicks at 50-kbp intervals in the eukaryotic genomic DNA. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14964-14969.	7.1	22
131	Differentiation of CD1aâ° and CD1a+ monocyte-derived dendritic cells is biased by lipid environment and PPARÎ3. Blood, 2007, 109, 643-652.	1.4	121
132	PPARÎ ³ regulates the function of human dendritic cells primarily by altering lipid metabolism. Blood, 2007, 110, 3271-3280.	1.4	122
133	PPARÎ 3 in immunity and inflammation: cell types and diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1014-1030.	2.4	138
134	Monoclonal antibody proteomics: Discovery and prevalidation of chronic obstructive pulmonary disease biomarkers in a single step. Electrophoresis, 2007, 28, 4401-4406.	2.4	19
135	Non-DNA binding, dominant-negative, human PPAR \hat{I}^3 mutations cause lipodystrophic insulin resistance. Cell Metabolism, 2006, 4, 303-311.	16.2	164
136	SLAM/SLAM interactions inhibit CD40-induced production of inflammatory cytokines in monocyte-derived dendritic cells. Blood, 2006, 107, 2821-2829.	1.4	46
137	Twenty years of nuclear receptors. EMBO Reports, 2006, 7, 579-584.	4.5	6
138	PPARÂ, a Lipid-Activated Transcription Factor as a Regulator of Dendritic Cell Function. Annals of the New York Academy of Sciences, 2006, 1088, 207-218.	3.8	58
139	Chip-on-beads: Flow-cytometric evaluation of chromatin immunoprecipitation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 1086-1091.	1.5	11
140	PPARÎ ³ controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. Journal of Experimental Medicine, 2006, 203, 2351-2362.	8.5	176
141	Peroxisome Proliferator-activated Receptor \hat{I}^3 -regulated ABCG2 Expression Confers Cytoprotection to Human Dendritic Cells. Journal of Biological Chemistry, 2006, 281, 23812-23823.	3.4	164
142	PPAR \hat{l}^3 controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. Journal of Cell Biology, 2006, 175, i1-i1.	5.2	2
143	Accelerated recovery of 5-fluorouracil-damaged bone marrow after rosiglitazone treatment. European Journal of Pharmacology, 2005, 522, 122-129.	3.5	11
144	Roles for lipid-activated transcription factors in atherosclerosis. Molecular Nutrition and Food Research, 2005, 49, 1072-1074.	3.3	10

#	Article	IF	Citations
145	Atherosclerosis and Lipid Peroxidation. Molecular Nutrition and Food Research, 2005, 49, 989-991.	3.3	2
146	Identification of factor XIII-A as a marker of alternative macrophage activation. Cellular and Molecular Life Sciences, 2005, 62, 2132-2139.	5.4	103
147	Coagulation factor XIII-A. A flow cytometric intracellular marker in the classification of acute myeloid leukemias. Thrombosis and Haemostasis, 2005, 94, 454-9.	3.4	22
148	Retinoids Potentiate Peroxisome Proliferator-Activated Receptor Î ³ Action in Differentiation, Gene Expression, and Lipid Metabolic Processes in Developing Myeloid Cells. Molecular Pharmacology, 2005, 67, 1935-1943.	2.3	49
149	Arginine Methylation Provides Epigenetic Transcription Memory for Retinoid-Induced Differentiation in Myeloid Cells. Molecular and Cellular Biology, 2005, 25, 5648-5663.	2.3	54
150	Genome-wide localization of histone 4 arginine 3 methylation in a differentiation primed myeloid leukemia cell line. Immunobiology, 2005, 210, 141-152.	1.9	11
151	Spotlight on…Laszlo Nagy. FEBS Letters, 2005, 579, 6009-6009.	2.8	0
152	Transcriptional Regulation of Human CYP27 Integrates Retinoid, Peroxisome Proliferator-Activated Receptor, and Liver X Receptor Signaling in Macrophages. Molecular and Cellular Biology, 2004, 24, 8154-8166.	2.3	108
153	Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death and Differentiation, 2004, 11, S126-S143.	11.2	237
154	Mechanism of the nuclear receptor molecular switch. Trends in Biochemical Sciences, 2004, 29, 317-324.	7. 5	349
155	Activation of PPARÎ ³ Specifies a Dendritic Cell Subtype Capable of Enhanced Induction of iNKT Cell Expansion. Immunity, 2004, 21, 95-106.	14.3	150
156	Molecular Determinants of the Balance between Co-repressor and Co-activator Recruitment to the Retinoic Acid Receptor. Journal of Biological Chemistry, 2003, 278, 43797-43806.	3.4	28
157	The Structural Basis for the Specificity of Retinoid-X Receptor-selective Agonists: New Insights Into the Role of Helix H12. Journal of Biological Chemistry, 2002, 277, 11385-11391.	3.4	65
158	A PPARÎ 3 -LXR-ABCA1 Pathway in Macrophages Is Involved in Cholesterol Efflux and Atherogenesis. Molecular Cell, 2001, 7, 161-171.	9.7	1,240
159	PPAR- \hat{I}^3 dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine, 2001, 7, 48-52.	30.7	1,014
160	Differential Effects of Rexinoids and Thiazolidinediones on Metabolic Gene Expression in Diabetic Rodents. Molecular Pharmacology, 2001, 59, 765-773.	2.3	107
161	Role for Peroxisome Proliferator-Activated Receptor α in Oxidized Phospholipid–Induced Synthesis of Monocyte Chemotactic Protein-1 and Interleukin-8 by Endothelial Cells. Circulation Research, 2000, 87, 516-521.	4.5	284
162	Essential Roles of Retinoic Acid Signaling in Interdigital Apoptosis and Control of BMP-7 Expression in Mouse Autopods. Developmental Biology, 1999, 208, 30-43.	2.0	118

#	Article	IF	CITATIONS
163	Regulation of macrophage gene expression by peroxisome-proliferator-activated receptor y. Current Opinion in Lipidology, 1999, 10, 485-490.	2.7	54
164	Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature, 1998, 391, 811-814.	27.8	1,063
165	A transgenic mouse model for the study of apoptosis during limb development. Cell Death and Differentiation, 1998, 5, 126-126.	11.2	7
166	Retinoid-induced apoptosis in normal and neoplastic tissues. Cell Death and Differentiation, 1998, 5, 11-19.	11.2	112
167	Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARγ. Cell, 1998, 93, 229-240.	28.9	1,726
168	PPARÎ ³ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL. Cell, 1998, 93, 241-252.	28.9	1,689
169	Lack of Induction of Tissue Transglutaminase But Activation of the Preexisting Enzyme in c-Myc-Induced Apoptosis of CHO Cells. Biochemical and Biophysical Research Communications, 1997, 236, 280-284.	2.1	10
170	Nuclear Receptor Repression Mediated by a Complex Containing SMRT, mSin3A, and Histone Deacetylase. Cell, 1997, 89, 373-380.	28.9	1,206
171	Nuclear Receptor Coactivator ACTR Is a Novel Histone Acetyltransferase and Forms a Multimeric Activation Complex with P/CAF and CBP/p300. Cell, 1997, 90, 569-580.	28.9	1,400
172	The promoter of the mouse tissue transglutaminase gene directs tissue-specific, retinoid-regulated and apoptosis-linked expression. Cell Death and Differentiation, 1997, 4, 534-547.	11.2	54
173	Retinoic acid induction of the tissue transglutaminase promoter is mediated by a novel response element. Molecular and Cellular Endocrinology, 1996, 120, 203-212.	3.2	23
174	Identification and Characterization of a Versatile Retinoid Response Element (Retinoic Acid Receptor) Tj ETQq0 0 (Promoter. Journal of Biological Chemistry, 1996, 271, 4355-4365.	0 rgBT /Ov 3.4	verlock 10 Tf 115
175	Retinoid-regulated expression of BCL-2 and tissue transglutaminase during the differentiation and apoptosis of human myeloid leukemia (HL-60) cells. Leukemia Research, 1996, 20, 499-505.	0.8	45
176	Retinoic acid receptor transcripts in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 1991, 179, 32-38.	2.1	12
177	Retinoid Signaling is a Context-Dependent Regulator of Embryonic Stem Cells. , 0, , .		1