Andrea Sinz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7909351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis. Blood, 2022, 139, 651-665.	1.4	20
2	Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein–Protein Interactions─A Method for All Seasons. Chemical Reviews, 2022, 122, 7500-7531.	47.7	101
3	Modulation of transcriptional mineralocorticoid receptor activity by casein kinase 1. FASEB Journal, 2022, 36, e22059.	0.5	0
4	Different Oligomeric States of the Tumor Suppressor p53 Show Identical Binding Behavior Towards the S100β Homodimer. ChemBioChem, 2022, , .	2.6	2
5	IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian cancer. RNA Biology, 2021, 18, 391-403.	3.1	21
6	Oncogenic Potential of the Dual-Function Protein MEX3A. Biology, 2021, 10, 415.	2.8	10
7	First 3D-Structural Data of Full-Length Guanylyl Cyclase 1 in Rod-Outer-Segment Preparations of Bovine Retina by Cross-Linking/Mass Spectrometry. Journal of Molecular Biology, 2021, 433, 166947.	4.2	3
8	Probing glycation potential of dietary sugars in human blood by an integrated in vitro approach. Food Chemistry, 2021, 347, 128951.	8.2	3
9	An anti-HER2 nanobody binds to its antigen HER2 via two independent paratopes. International Journal of Biological Macromolecules, 2021, 182, 502-511.	7.5	5
10	A rapid and reliable liquid chromatography/mass spectrometry method for SARS-CoV-2 analysis from gargle solutions and saliva. Analytical and Bioanalytical Chemistry, 2021, 413, 6503-6511.	3.7	14
11	Cross-Linking/Mass Spectrometry Combined with Ion Mobility on a timsTOF Pro Instrument for Structural Proteomics. Analytical Chemistry, 2021, 93, 11442-11450.	6.5	26
12	High-throughput characterization of photocrosslinker-bearing ion channel variants to map residues critical for function and pharmacology. PLoS Biology, 2021, 19, e3001321.	5.6	13
13	A Diazirineâ€Modified Membrane Lipid to Study Peptide/Lipid Interactions – Chances and Challenges. Chemistry - A European Journal, 2021, 27, 14586-14593.	3.3	5
14	Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN)2CO group during maturation of E. coli [NiFe]-hydrogenase 2. Scientific Reports, 2021, 11, 24362.	3.3	7
15	Cross-linking/mass spectrometry to get a closer view on protein interaction networks. Current Opinion in Biotechnology, 2020, 63, 48-53.	6.6	64
16	The Isotope-Labeled, MS-Cleavable Cross-Linker Disuccinimidyl Dibutyric Urea for Improved Cross-Linking/Mass Spectrometry Studies. Journal of the American Society for Mass Spectrometry, 2020, 31, 183-189.	2.8	13
17	A biuretâ€derived, MSâ€cleavable crossâ€ŀinking reagent for protein structural analysis: A proofâ€ofâ€principle study. Journal of Mass Spectrometry, 2020, 55, e4449.	1.6	1
18	Exploring GPCRâ€arrestin interfaces with genetically encoded crosslinkers. EMBO Reports, 2020, 21, e50437.	4.5	24

#	Article	IF	CITATIONS
19	Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Scientific Reports, 2020, 10, 12618.	3.3	27
20	Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Nature Communications, 2020, 11, 2277.	12.8	38
21	Cross-linking/mass spectrometry at the crossroads. Analytical and Bioanalytical Chemistry, 2020, 412, 5981-5987.	3.7	30
22	The COVID-19 MS Coalition—accelerating diagnostics, prognostics, and treatment. Lancet, The, 2020, 395, 1761-1762.	13.7	51
23	Mass Spectrometric Identification of SARS-CoV-2 Proteins from Gargle Solution Samples of COVID-19 Patients. Journal of Proteome Research, 2020, 19, 4389-4392.	3.7	159
24	Delineating the Molecular Basis of the Calmodulin–bMunc13-2 Interaction by Cross-Linking/Mass Spectrometry—Evidence for a Novel CaM Binding Motif in bMunc13-2. Cells, 2020, 9, 136.	4.1	7
25	A Simple Cross-Linking/Mass Spectrometry Workflow for Studying System-wide Protein Interactions. Analytical Chemistry, 2019, 91, 10236-10244.	6.5	113
26	Oligomeric state, hydrodynamic properties and target recognition of human Calcium and Integrin Binding protein 2 (CIB2). Scientific Reports, 2019, 9, 15058.	3.3	7
27	Profiling of Seed Proteome in Pea (Pisum sativum L.) Lines Characterized with High and Low Responsivity to Combined Inoculation with Nodule Bacteria and Arbuscular Mycorrhizal Fungi. Molecules, 2019, 24, 1603.	3.8	30
28	First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study. Analytical Chemistry, 2019, 91, 6953-6961.	6.5	100
29	The First MS-Cleavable, Photo-Thiol-Reactive Cross-Linker for Protein Structural Studies. Journal of the American Society for Mass Spectrometry, 2019, 30, 139-148.	2.8	29
30	Free radicalâ€initiated peptide sequencing (FRIPS)â€based crossâ€linkers for improved peptide and protein structure analysis. Mass Spectrometry Reviews, 2019, 38, 187-201.	5.4	13
31	Crosslinking Mass Spectrometry Goes In-Tissue. Cell Systems, 2018, 6, 10-12.	6.2	27
32	Carboxyl-Photo-Reactive MS-Cleavable Cross-Linkers: Unveiling a Hidden Aspect of Diazirine-Based Reagents. Analytical Chemistry, 2018, 90, 2805-2809.	6.5	71
33	Vernetzung/Massenspektrometrie zur Untersuchung von Proteinstrukturen und Proteinâ€Proteinâ€Wechselwirkungen: Wo stehen wir und welchen Weg wollen wir einschlagen?. Angewandte Chemie, 2018, 130, 6498-6504.	2.0	10
34	Cross‣inking/Mass Spectrometry for Studying Protein Structures and Protein–Protein Interactions: Where Are We Now and Where Should We Go from Here?. Angewandte Chemie - International Edition, 2018, 57, 6390-6396.	13.8	156
35	Molecular Details of Retinal Guanylyl Cyclase 1/GCAP-2 Interaction. Frontiers in Molecular Neuroscience, 2018, 11, 330.	2.9	9
36	Structural Investigation of Proteins and Protein Complexes by Chemical Cross-Linking/Mass Spectrometry. Advances in Experimental Medicine and Biology, 2018, 1105, 101-121.	1.6	18

#	Article	IF	CITATIONS
37	A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions. Nature Protocols, 2018, 13, 2864-2889.	12.0	157
38	Reconstitution of mammalian cleavage factor II involved in 3′ processing of mRNA precursors. Rna, 2018, 24, 1721-1737.	3.5	36
39	Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB. Nature Communications, 2018, 9, 1806.	12.8	46
40	The effect of simulated microgravity on the Brassica napus seedling proteome. Functional Plant Biology, 2018, 45, 440.	2.1	12
41	Mining seed proteome: from protein dynamics to modification profiles. Biological Communications, 2018, 63, 43-58.	0.8	15
42	Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Review of Proteomics, 2017, 14, 223-242.	3.0	15
43	Improved single-step enrichment methods of cross-linked products for protein structure analysis and protein interaction mapping. Analytical and Bioanalytical Chemistry, 2017, 409, 2393-2400.	3.7	40
44	Combining affinity enrichment, crossâ€linking with photo amino acids, and mass spectrometry for probing protein kinase D2 interactions. Proteomics, 2017, 17, e1600459.	2.2	21
45	Azide-Modified Membrane Lipids: Synthesis, Properties, and Reactivity. Langmuir, 2017, 33, 4960-4973.	3.5	13
46	An Integrated Mass Spectrometry Based Approach to Probe the Structure of the Fullâ€Length Wildâ€Type Tetrameric p53 Tumor Suppressor. Angewandte Chemie, 2017, 129, 281-285.	2.0	7
47	An Integrated Mass Spectrometry Based Approach to Probe the Structure of the Fullâ€Length Wildâ€Type Tetrameric p53 Tumor Suppressor. Angewandte Chemie - International Edition, 2017, 56, 275-279.	13.8	31
48	The First Zeroâ€Length Mass Spectrometryâ€Cleavable Crossâ€Linker for Protein Structure Analysis. Angewandte Chemie, 2017, 129, 14743-14747.	2.0	8
49	The First Zeroâ€Length Mass Spectrometryâ€Cleavable Crossâ€Linker for Protein Structure Analysis. Angewandte Chemie - International Edition, 2017, 56, 14551-14555.	13.8	50
50	To Be or Not to Be? Five Guidelines to Avoid Misassignments in Cross-Linking/Mass Spectrometry. Analytical Chemistry, 2017, 89, 7832-7835.	6.5	60
51	A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS). Journal of the American Society for Mass Spectrometry, 2017, 28, 2039-2053.	2.8	20
52	Translational repression of the <i>Drosophila nanos</i> mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. Rna, 2017, 23, 1552-1568.	3.5	66
53	Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis. Journal of the American Society for Mass Spectrometry, 2017, 28, 2022-2038.	2.8	11
54	Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS. Journal of the American Society for Mass Spectrometry, 2017, 28, 56-68.	2.8	13

#	Article	IF	CITATIONS
55	Divide and conquer: cleavable cross-linkers to study protein conformation and protein–protein interactions. Analytical and Bioanalytical Chemistry, 2017, 409, 33-44.	3.7	100
56	Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor $\hat{l}^2/\hat{l}^{\prime}$ upon Ligand Binding. PLoS ONE, 2016, 11, e0151412.	2.5	13
57	Identification of low abundance cyclophilins in human plasma. Proteomics, 2016, 16, 2815-2826.	2.2	8
58	Mass spectrometryâ€based secretome analysis of nonâ€small cell lung cancer cell lines. Proteomics, 2016, 16, 2801-2814.	2.2	14
59	Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry. Journal of Proteome Research, 2016, 15, 3686-3699.	3.7	14
60	Osmotic stress is accompanied by protein glycation in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 6283-6295.	4.8	47
61	Conformational Shift of a βâ€Hairpin Peptide upon Complex Formation with an Oligo–proline Peptide Studied by Mass Spectrometry. ChemistrySelect, 2016, 1, 3651-3656.	1.5	3
62	Integrated Workflow for Structural Proteomics Studies Based on Cross-Linking/Mass Spectrometry with an MS/MS Cleavable Cross-Linker. Analytical Chemistry, 2016, 88, 7930-7937.	6.5	58
63	Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes. Methods in Molecular Biology, 2016, 1394, 109-127.	0.9	20
64	Dissociation behavior of a bifunctional tempoâ€active ester reagent for peptide structure analysis by free radical initiated peptide sequencing (FRIPS) mass spectrometry. Journal of Mass Spectrometry, 2015, 50, 396-406.	1.6	15
65	Structure of fullâ€length p53 tumor suppressor probed by chemical crossâ€linking and mass spectrometry. Proteomics, 2015, 15, 2746-2755.	2.2	45
66	Chemical crossâ€linking and native mass spectrometry: A fruitful combination for structural biology. Protein Science, 2015, 24, 1193-1209.	7.6	112
67	Extending the cross-linking/mass spectrometry strategy: Facile incorporation of photo-activatable amino acids into the model protein calmodulin in Escherichia coli cells. Methods, 2015, 89, 121-127.	3.8	23
68	The Y3** ncRNA promotes the 3′ end processing of histone mRNAs. Genes and Development, 2015, 29, 1998-2003.	5.9	30
69	Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis. Journal of the American Society for Mass Spectrometry, 2015, 26, 83-97.	2.8	197
70	The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks. Expert Review of Proteomics, 2014, 11, 733-743.	3.0	116
71	Mapping Cell Envelope and Periplasm Protein Interactions of <i>Escherichia coli</i> Respiratory Formate Dehydrogenases by Chemical Cross-Linking and Mass Spectrometry. Journal of Proteome Research, 2014, 13, 5524-5535.	3.7	9
72	Preparation of Monolithic Affinity Media for Nano-Liquid Chromatography Applications. Methods in Molecular Biology, 2014, 1129, 351-364.	0.9	0

#	Article	IF	CITATIONS
73	Structural insights into calmodulin/Munc13 interaction. Biological Chemistry, 2014, 395, 763-768.	2.5	4
74	Accessibilities of <i>N</i> â€ŧerminal myristoyl chain and cysteines in guanylyl cyclaseâ€activating proteinâ€2 (GCAPâ€2) studied by covalent labeling and mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 835-838.	1.5	1
75	Reliable Identification of Cross-Linked Products in Protein Interaction Studies by ¹³ C-Labeled <i>p-</i> Benzoylphenylalanine. Journal of the American Society for Mass Spectrometry, 2014, 25, 1628-1641.	2.8	11
76	Disulfide Linkage and Structure of Highly Stable Yeast-derived Virus-like Particles of Murine Polyomavirus. Journal of Biological Chemistry, 2014, 289, 10411-10418.	3.4	16
77	Pyruvate Formate-Lyase Interacts Directly with the Formate Channel FocA to Regulate Formate Translocation. Journal of Molecular Biology, 2014, 426, 2827-2839.	4.2	45
78	Analysis of Nidogen-1/Laminin γ1 Interaction by Cross-Linking, Mass Spectrometry, and Computational Modeling Reveals Multiple Binding Modes. PLoS ONE, 2014, 9, e112886.	2.5	44
79	The correlation of genome size and DNA methylation rate in metazoans. Theory in Biosciences, 2013, 132, 47-60.	1.4	43
80	Structural Analysis of Guanylyl Cyclase-Activating Protein-2 (GCAP-2) Homodimer by Stable Isotope-Labeling, Chemical Cross-Linking, and Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2013, 24, 1969-1979.	2.8	32
81	Multidimensional nano-HPLC coupled with tandem mass spectrometry for analyzing biotinylated proteins. Analytical and Bioanalytical Chemistry, 2013, 405, 2163-2173.	3.7	15
82	Monitoring Conformational Changes in Peroxisome Proliferator-Activated Receptor α by a Genetically Encoded Photoamino Acid, Cross-Linking, and Mass Spectrometry. Journal of Medicinal Chemistry, 2013, 56, 4252-4263.	6.4	19
83	Structural insights into calmodulin/adenylyl cyclase 8 interaction. Analytical and Bioanalytical Chemistry, 2013, 405, 9333-9342.	3.7	14
84	Munc13-Like skMLCK Variants Cannot Mimic the Unique Calmodulin Binding Mode of Munc13 as Evidenced by Chemical Cross-Linking and Mass Spectrometry. PLoS ONE, 2013, 8, e75119.	2.5	4
85	Analyzing PPARα/Ligand Interactions by Chemical Cross-Linking and High-Resolution Mass Spectrometry. Methods in Molecular Biology, 2013, 952, 287-299.	0.9	1
86	Selective selC-Independent Selenocysteine Incorporation into Formate Dehydrogenases. PLoS ONE, 2013, 8, e61913.	2.5	14
87	Nonconserved Ca ²⁺ /Calmodulin Binding Sites in Munc13s Differentially Control Synaptic Short-Term Plasticity. Molecular and Cellular Biology, 2012, 32, 4628-4641.	2.3	53
88	Analyse von SekundÃ rs trukturen in Peptiden mithilfe photoaktivierbarer AminosÃ u reanaloga. Angewandte Chemie, 2012, 124, 12770-12774.	2.0	3
89	Analysis of Peptide Secondary Structures by Photoactivatable Amino Acid Analogues. Angewandte Chemie - International Edition, 2012, 51, 12602-12605.	13.8	33
90	Distinct Mechanisms of Calmodulin Binding and Regulation of Adenylyl Cyclases 1 and 8. Biochemistry, 2012, 51, 7917-7929.	2.5	28

#	Article	IF	CITATIONS
91	Peptide Backbone Conformation Affects the Substrate Preference of Protein Arginine Methyltransferase I. Biochemistry, 2012, 51, 5463-5475.	2.5	12
92	Structural Insights into Retinal Guanylylcyclase–GCAP-2 Interaction Determined by Cross-Linking and Mass Spectrometry. Biochemistry, 2012, 51, 4932-4949.	2.5	21
93	Phospholipases A1 from Armillaria ostoyae Provide Insight into the Substrate Recognition of α/β-Hydrolase Fold Enzymes. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1435.	1.9	1
94	Chemical Cross-Linking and High-Resolution Mass Spectrometry to Study Protein–Drug Interactions. Methods in Molecular Biology, 2012, 803, 205-218.	0.9	11
95	Optimizing the enrichment of crossâ€linked products for mass spectrometric protein analysis. Rapid Communications in Mass Spectrometry, 2012, 26, 653-658.	1.5	86
96	StavroX—A Software for Analyzing Crosslinked Products in Protein Interaction Studies. Journal of the American Society for Mass Spectrometry, 2012, 23, 76-87.	2.8	300
97	Monolithic columns with immobilized monomeric avidin: preparation and application for affinity chromatography. Analytical and Bioanalytical Chemistry, 2012, 402, 2395-2405.	3.7	17
98	A universal matrixâ€assisted laser desorption/ionization cleavable crossâ€linker for protein structure analysis. Rapid Communications in Mass Spectrometry, 2011, 25, 155-161.	1.5	24
99	Monolithic media for applications in affinity chromatography. Journal of Separation Science, 2011, 34, 1958-1973.	2.5	51
100	Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry. Analytical and Bioanalytical Chemistry, 2010, 397, 3433-3440.	3.7	97
101	Forty-third annual meeting of the German Society for Mass Spectrometry. Analytical and Bioanalytical Chemistry, 2010, 398, 2777-2778.	3.7	0
102	Collisionâ€induced dissociative chemical crossâ€inking reagent for protein structure characterization: applied Edman chemistry in the gas phase. Journal of Mass Spectrometry, 2010, 45, 178-189.	1.6	38
103	Fragmentation behavior of a thioureaâ€based reagent for protein structure analysis by collisionâ€induced dissociative chemical crossâ€inking. Journal of Mass Spectrometry, 2010, 45, 880-891.	1.6	25
104	Computational modeling of laminin Nâ€ŧerminal domains using sparse distance constraints from disulfide bonds and chemical crossâ€ŀinking. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3409-3427.	2.6	29
105	A Capillary Monolithic Trypsin Reactor for Efficient Protein Digestion in <i>Online</i> and <i>Offline</i> Coupling to ESI and MALDI Mass Spectrometry. Analytical Chemistry, 2010, 82, 1434-1443.	6.5	79
106	Cleavable Cross-Linker for Protein Structure Analysis: Reliable Identification of Cross-Linking Products by Tandem MS. Analytical Chemistry, 2010, 82, 6958-6968.	6.5	211
107	Recombinant Expression, in Vitro Refolding, and Biophysical Characterization of the Human Glucagon-like Peptide-1 Receptor. Biochemistry, 2010, 49, 7956-7965.	2.5	23
108	A Novel Disulfide Pattern in Laminin-Type Epidermal Growth Factor-like (LE) Modules of Laminin β1 and γ1 Chains. Biochemistry, 2010, 49, 8359-8366.	2.5	10

#	Article	IF	CITATIONS
109	Recombinant production of bioactive human TNF-α by SUMO-fusion system – High yields from shake-flask culture. Protein Expression and Purification, 2010, 72, 238-243.	1.3	18
110	Separate Elements within a Single IQ-like Motif in Adenylyl Cyclase Type 8 Impart Ca2+/Calmodulin Binding and Autoinhibition. Journal of Biological Chemistry, 2009, 284, 15573-15588.	3.4	15
111	Immobilized monolithic enzyme reactors for application in proteomics and pharmaceutics. Analytical and Bioanalytical Chemistry, 2009, 395, 1583-1588.	3.7	21
112	Heterobifunctional isotopeâ€labeled amineâ€reactive photoâ€crossâ€linker for structural investigation of proteins by matrixâ€assisted laser desorption/ionization tandem timeâ€ofâ€flight and electrospray ionization LTQâ€Orbitrap mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 2811-2818.	1.5	37
113	Structural Insights into the Calmodulinâ^'Munc13 Interaction Obtained by Cross-Linking and Mass Spectrometry. Biochemistry, 2009, 48, 5908-5921.	2.5	65
114	An Innovative Method To Study Target Proteinâ^'Drug Interactions by Mass Spectrometry. Journal of Medicinal Chemistry, 2009, 52, 2875-2879.	6.4	23
115	Structural and Biophysical Characterization of the Proteins Interacting with the Herpes Simplex Virus 1 Origin of Replication. Journal of Biological Chemistry, 2009, 284, 16343-16353.	3.4	12
116	Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Analytical and Bioanalytical Chemistry, 2008, 392, 305-312.	3.7	232
117	Determination of disulfide bond patterns in laminin Î ² 1 chain N-terminal domains by nano-high-performance liquid chromatography/matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1933-1940.	1.5	16
118	Expression and purification of the ligand-binding domain of peroxisome proliferator-activated receptor alpha (PPARα). Protein Expression and Purification, 2008, 62, 185-189.	1.3	10
119	Isotope-Labeled Photoaffinity Reagents and Mass Spectrometry To Identify Protein–Ligand Interactions. Angewandte Chemie - International Edition, 2007, 46, 660-662.	13.8	41
120	Investigation of Protein–Ligand Interactions by Mass Spectrometry. ChemMedChem, 2007, 2, 425-431.	3.2	38
121	Annexin A2/P11 interaction: New insights into annexin A2 tetramer structure by chemical crosslinking, highâ€resolution mass spectrometry, and computational modeling. Proteins: Structure, Function and Bioinformatics, 2007, 69, 254-269.	2.6	39
122	Isotope-labeled cross-linkers and fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex. Journal of the American Society for Mass Spectrometry, 2006, 17, 1100-1113.	2.8	72
123	Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrometry Reviews, 2006, 25, 663-682.	5.4	589
124	Mapping Protein Interfaces by Chemical Cross-Linking and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Application to a Calmodulin/Adenylyl Cyclase 8 Peptide Complex. European Journal of Mass Spectrometry, 2005, 11, 525-534.	1.0	45
125	Mapping protein interfaces by a trifunctional cross-linker combined with MALDI-TOF and ESI-FTICR mass spectrometry. Journal of the American Society for Mass Spectrometry, 2005, 16, 1921-1931.	2.8	81
126	Chemical cross-linking and FTICR mass spectrometry for protein structure characterization. Analytical and Bioanalytical Chemistry, 2005, 381, 44-47.	3.7	25

#	Article	IF	CITATIONS
127	Chemical Cross-Linking and High-Performance Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Protein Interaction Analysis:Â Application to a Calmodulin/Target Peptide Complex. Analytical Chemistry, 2005, 77, 495-503.	6.5	70
128	Mapping the Topology and Determination of a Low-Resolution Three-Dimensional Structure of the Calmodulinâ^'Melittin Complex by Chemical Cross-Linking and High-Resolution FTICRMS:Â Direct Demonstration of Multiple Binding Modesâ€. Biochemistry, 2004, 43, 4703-4715.	2.5	103
129	Mapping spatial proximities of sulfhydryl groups in proteins using a fluorogenic cross-linker and mass spectrometry. Analytical Biochemistry, 2004, 331, 27-32.	2.4	16
130	Evaluation of the metal binding properties of a histidine-rich fusogenic peptide by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of Mass Spectrometry, 2003, 38, 1150-1159.	1.6	13
131	Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. Journal of Mass Spectrometry, 2003, 38, 1225-1237.	1.6	250
132	Mapping low-resolution three-dimensional protein structures using chemical cross-linking and Fourier transform ion-cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17, 2005-2014.	1.5	80
133	Mapping Protein Interfaces with a Fluorogenic Cross-Linker and Mass Spectrometry:Â Application to Nebulinâ^'Calmodulin Complexes. Biochemistry, 2001, 40, 7903-7913.	2.5	68
134	Chemical Cross-Linking and Mass Spectrometry for Investigation of Protein-Protein Interactions. , 0, , 83-107.		3