Zhong-Chang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7908815/publications.pdf

Version: 2024-02-01

		471509	477307
54	1,028	17	29
papers	citations	h-index	g-index
55	55	55	1590
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A new mitochondria-targeted fluorescent probe for exogenous and endogenous superoxide anion imaging in living cells and pneumonia tissue. Analyst, The, 2022, 147, 3534-3541.	3.5	4
2	A DNA-based nanocarrier for efficient cancer therapy. Journal of Pharmaceutical Analysis, 2021, 11, 330-339.	5.3	20
3	A novel fast-response and highly selective AlEgen fluorescent probe for visualizing peroxynitrite in living cells, <i>C. elegans</i> and inflammatory mice. Analyst, The, 2021, 146, 6556-6565.	3.5	7
4	Glutathione-responsive prodrug conjugates for image-guided combination in cancer therapy. European Journal of Medicinal Chemistry, 2021, 225, 113746.	5.5	5
5	A new fluorescently labeled bisphosphonate for theranostics in tumor bone metastasis. Talanta, 2021, 235, 122796.	5.5	2
6	Clinical evaluation of plasma coagulation parameters in patients with advancedâ€stage nonâ€small cell lung cancer treated with palliative chemotherapy in China. International Journal of Clinical Practice, 2020, 74, e13619.	1.7	5
7	Oxygen Self-Sufficient Core–Shell Metal–Organic Framework-Based Smart Nanoplatform for Enhanced Synergistic Chemotherapy and Photodynamic Therapy. ACS Applied Materials & Discrete Lamp; Interfaces, 2020, 12, 24662-24674.	8.0	70
8	Clinical Evaluation of Serum Tumor Markers in Patients With Advanced-Stage Non-Small Cell Lung Cancer Treated With Palliative Chemotherapy in China. Frontiers in Oncology, 2020, 10, 800.	2.8	13
9	Tubulin Inhibitors Binding to Colchicine-Site: A Review from 2015 to 2019. Current Medicinal Chemistry, 2020, 27, 6787-6814.	2.4	31
10	Pharmacological Activities of Components Contained in Camellia Oil and Camellia Oil Cake and their Applications in Various Industries. Current Traditional Medicine, 2020, 6, 86-105.	0.4	2
11	Synthesis, anticancer activity and molecular docking studies on 1,2-diarylbenzimidazole analogues as anti-tubulin agents. Bioorganic Chemistry, 2019, 92, 103219.	4.1	10
12	Dihydropyrazole Derivatives Containing Benzo Oxygen Heterocycle and Sulfonamide Moieties Selectively and Potently Inhibit COX-2: Design, Synthesis, and Anti-Colon Cancer Activity Evaluation. Molecules, 2019, 24, 1685.	3.8	16
13	Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC–Asef interaction. European Journal of Medicinal Chemistry, 2019, 177, 425-447.	5.5	15
14	Design, synthesis, and biological evaluation of 2,3â€diphenylâ€cycloalkyl pyrazole derivatives as potential tubulin polymerization inhibitors. Chemical Biology and Drug Design, 2019, 94, 1894-1904.	3.2	8
15	Design, synthesis and evaluation of novel diaryl-1,5-diazoles derivatives bearing morpholine as potent dual COX-2/5-LOX inhibitors and antitumor agents. European Journal of Medicinal Chemistry, 2019, 169, 168-184.	5.5	34
16	A class of novel tubulin polymerization inhibitors exert effective anti-tumor activity via mitotic catastrophe. European Journal of Medicinal Chemistry, 2019, 163, 896-910.	5.5	31
17	Design, synthesis, and biological evaluation of new B-RafV600E kinase inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 2372-2380.	3.0	11
18	Design of potent Bâ€Raf ^{V600E} inhibitors by multiple copy simulation search strategy. Chemical Biology and Drug Design, 2018, 91, 567-574.	3.2	6

#	Article	IF	CITATIONS
19	Identification and Biological Evaluation of Novel Typeâ€II Bâ€RafV600EInhibitors. ChemMedChem, 2018, 13, 2558-2566.	3.2	8
20	Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorganic and Medicinal Chemistry, 2018, 26, 4264-4275.	3.0	33
21	Design, synthesis and biological evaluation of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. European Journal of Medicinal Chemistry, 2018, 157, 909-924.	5.5	51
22	Design, synthesis, and biological evaluation of pyrazole derivatives containing acetamide bond as potential BRAF V600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2382-2390.	2.2	11
23	Identification of novel B-RafV600E inhibitors employing FBDD strategy. Biochemical Pharmacology, 2017, 132, 63-76.	4.4	17
24	Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochemical Pharmacology, 2017, 137, 10-28.	4.4	15
25	Synthesis, molecular docking and biological evaluation of 1â€phenylsulphonylâ€2â€(1â€methylindolâ€3â€yl)â€benzimidazole derivatives as novel potential tubulin assembinhibitors. Chemical Biology and Drug Design, 2017, 90, 112-118.	oling	10
26	Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3653-3660.	2.2	53
27	Design, synthesis, and biological evaluation of chrysin derivatives as potential FabH inhibitors. Chemical Biology and Drug Design, 2017, 89, 136-140.	3.2	12
28	Design, Synthesis and Biological Evaluation of Benzohydrazide Derivatives Containing Dihydropyrazoles as Potential EGFR Kinase Inhibitors. Molecules, 2016, 21, 1012.	3.8	18
29	Design, synthesis and biological evaluation of novel benzo-α-pyrone containing piperazine derivatives as potential BRAF V600E inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4983-4991.	2.2	7
30	Design, Synthesis and Antitumor Activity of Novel link-bridge and B-Ring Modified Combretastatin A-4 (CA-4) Analogues as Potent Antitubulin Agents. Scientific Reports, 2016, 6, 25387.	3.3	42
31	DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, blocks malignant glioblastoma growth and invasion by inhibiting AEG-1 and NF-κB signaling pathways. Scientific Reports, 2016, 6, 27331.	3.3	9
32	Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3491-3498.	2.2	66
33	Metronidazole containing pyrazole derivatives potently inhibit tyrosylâ€ŧRNA synthetase: design, synthesis, and biological evaluation. Chemical Biology and Drug Design, 2016, 88, 592-598.	3.2	16
34	Design, synthesis and evaluation of benzenesulfonamide-substituted 1,5-diarylpyrazoles containing phenylacetohydrazide derivatives as COX-1/COX-2 agents against solid tumors. RSC Advances, 2016, 6, 22917-22935.	3.6	12
35	AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF- \hat{l}^2 1-triggered epithelial-mesenchymal transition. Oncotarget, 2016, 7, 13122-13138.	1.8	40
36	Synthesis, Biological Evaluation, and Docking of Dihydropyrazole Sulfonamide Containing 2â€hydroxyphenyl Moiety: A Series of Novel <scp>MMP</scp> â€2 Inhibitors. Chemical Biology and Drug Design, 2015, 86, 1405-1410.	3.2	7

#	Article	IF	Citations
37	EGFR/HER-2 inhibitors: synthesis, biological evaluation and 3D-QSAR analysis of dihydropyridine-containing thiazolinone derivatives. RSC Advances, 2015, 5, 21445-21454.	3.6	10
38	Design, synthesis and molecular docking of salicylic acid derivatives containing metronidazole as a new class of antimicrobial agents. Bioorganic and Medicinal Chemistry, 2015, 23, 6148-6156.	3.0	12
39	Design, synthesis, biological evaluation and molecular modeling of dihydropyrazole sulfonamide derivatives as potential COX-1/COX-2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1947-1951.	2.2	40
40	Dihydropyrazoles containing morpholine: design, synthesis and bioassay testing as potent antimicrobial agents. RSC Advances, 2015, 5, 24997-25005.	3.6	12
41	Sulfonamide derivatives containing dihydropyrazole moieties selectively and potently inhibit MMP-2/MMP-9: Design, synthesis, inhibitory activity and 3D-QSAR analysis. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4664-4671.	2.2	24
42	Synthesis of Caffeic Acid Amides Bearing 2,3,4,5-Tetra-hydrobenzo[b][1,4]dioxocine Moieties and Their Biological Evaluation as Antitumor Agents. Molecules, 2014, 19, 7269-7286.	3.8	6
43	Ni(II) Ternary Complex Based on Antimicrobial Drug Enoxacin: Synthesis and Biological Properties. Chinese Journal of Chemistry, 2014, 32, 1169-1175.	4.9	6
44	Novel metronidazole-sulfonamide derivatives as potent and selective carbonic anhydrase inhibitors: design, synthesis and biology analysis. RSC Advances, 2014, 4, 33029-33038.	3.6	12
45	Design and synthesis of 2-styryl of 5-Nitroimidazole derivatives and antimicrobial activities as FabH inhibitors. European Journal of Medicinal Chemistry, 2014, 76, 387-396.	5.5	16
46	Synthesis, biological evaluation, and molecular docking studies of novel 2-styryl-5-nitroimidazole derivatives containing 1,4-benzodioxan moiety as FAK inhibitors with anticancer activity. Bioorganic and Medicinal Chemistry, 2014, 22, 2947-2954.	3.0	19
47	Design, synthesis, evaluation and 3D-QSAR analysis of benzosulfonamide benzenesulfonates as potent and selective inhibitors of MMP-2. RSC Advances, 2014, 4, 39214.	3.6	13
48	Synthesis and biological evaluation of quinoline–imidazole hybrids as potent telomerase inhibitors: a promising class of antitumor agents. RSC Advances, 2014, 4, 20382.	3.6	15
49	Cu(<scp>ii</scp>) and Co(<scp>ii</scp>) ternary complexes of quinolone antimicrobial drug enoxacin and levofloxacin: structure and biological evaluation. RSC Advances, 2014, 4, 35193-35204.	3.6	24
50	Design, synthesis and biological evaluation of metronidazoleâ€"thiazole derivatives as antibacterial inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5279-5283.	2.2	27
51	Design, synthesis, biological evaluation and molecular docking of novel metronidazole derivatives as selective and potent JAK3 inhibitors. RSC Advances, 2014, 4, 16694-16704.	3.6	10
52	Potentiating 1-(2-hydroxypropyl)-2-styryl-5-nitroimidazole derivatives against antibacterial agents: Design, synthesis and biology analysis. European Journal of Medicinal Chemistry, 2013, 65, 456-463.	5.5	11
53	Sulfonamides containing coumarin moieties selectively and potently inhibit carbonic anhydrases II and IX: Design, synthesis, inhibitory activity and 3D-QSAR analysis. European Journal of Medicinal Chemistry, 2013, 66, 1-11.	5.5	52
54	A highly selective AlEgen fluorescent probe for visualizing Cys in living cells and C. elegans. New Journal of Chemistry, 0 , , .	2.8	2