
Rongji Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7908774/publications.pdf Version: 2024-02-01

PONCULU

#	Article	IF	CITATIONS
1	Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Applied Catalysis B: Environmental, 2019, 240, 112-121.	20.2	334
2	Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale, 2014, 6, 11336-11343.	5.6	229
3	Facile Synthesis of Auâ€Nanoparticle/Polyoxometalate/Graphene Tricomponent Nanohybrids: An Enzymeâ€Free Electrochemical Biosensor for Hydrogen Peroxide. Small, 2012, 8, 1398-1406.	10.0	228
4	Modular Design of Nobleâ€Metalâ€Free Mixed Metal Oxide Electrocatalysts for Complete Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4644-4648.	13.8	182
5	Bottomâ€Up Construction of Triazineâ€Based Frameworks as Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 3190-3195.	21.0	167
6	Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. Journal of Materials Chemistry A, 2016, 4, 4738-4744.	10.3	139
7	Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy and Environmental Science, 2016, 9, 1012-1023.	30.8	138
8	Highly selective electroreduction of N ₂ and CO ₂ to urea over artificial frustrated Lewis pairs. Energy and Environmental Science, 2021, 14, 6605-6615.	30.8	130
9	Polyoxometalates on Functional Substrates: Concepts, Synergies, and Future Perspectives. Advanced Science, 2020, 7, 1903511.	11.2	129
10	Cobalt Single Atoms Immobilized N-Doped Carbon Nanotubes for Enhanced Bifunctional Catalysis toward Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Energy Materials, 2018, 1, 3283-3291.	5.1	90
11	Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem Catalysis, 2022, 2, 309-320.	6.1	89
12	Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2014, 158-159, 296-300.	20.2	86
13	Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution. Journal of Materials Chemistry, 2012, 22, 23815.	6.7	83
14	Facile synthesis of a Ag nanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activity in the electrocatalysis of oxygen reduction. Journal of Materials Chemistry, 2011, 21, 14917.	6.7	78
15	Bimetallic manganese-vanadium functionalized N,S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Applied Catalysis B: Environmental, 2020, 277, 119195.	20.2	76
16	Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 11961.	10.3	75
17	Photochemical and electrochemical hydrogen evolution reactivity of lanthanide-functionalized polyoxotungstates. Chemical Communications, 2018, 54, 10427-10430.	4.1	75
18	A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. Journal of Materials Chemistry, 2012, 22, 3319.	6.7	73

Rongji Liu

#	Article	lF	CITATIONS
19	Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy and Environmental Science, 2022, 15, 2084-2095.	30.8	73
20	Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: enhanced photocatalytic activities. Journal of Materials Chemistry A, 2013, 1, 1488-1494.	10.3	64
21	Manganese Vanadium Oxide–N-Doped Reduced Graphene Oxide Composites as Oxygen Reduction and Oxygen Evolution Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 44511-44517.	8.0	62
22	Carbon quantum dots as novel sensitizers for photoelectrochemical solar hydrogen generation and their size-dependent effect. Nanotechnology, 2013, 24, 335401.	2.6	58
23	Polyoxometalate‣ingle Atom Catalysts (POM‣ACs) in Energy Research and Catalysis. Advanced Energy Materials, 2021, 11, 2101120.	19.5	57
24	High Proton onductivity in Covalently Linked Polyoxometalateâ€Organoboronic Acidâ€Polymers. Angewandte Chemie - International Edition, 2021, 60, 16953-16957.	13.8	50
25	High Oxygen Reduction Reaction Performances of Cathode Materials Combining Polyoxometalates, Coordination Complexes, and Carboneous Supports. ACS Applied Materials & Interfaces, 2017, 9, 38486-38498.	8.0	48
26	Îμ-Keggin-based coordination networks: Synthesis, structure and application toward green synthesis of polyoxometalate@graphene hybrids. Dalton Transactions, 2012, 41, 9989.	3.3	47
27	Br/Co/N Co-doped porous carbon frameworks with enriched defects for high-performance electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 10865-10874.	10.3	47
28	Multinuclear Cobalt(II)-Containing Heteropolytungstates: Structure, Magnetism, and Electrochemistry. Inorganic Chemistry, 2014, 53, 5179-5188.	4.0	42
29	Design and optical investigations of a spironaphthoxazine/polyoxometalate/spiropyran triad. Journal of Materials Chemistry C, 2014, 2, 4748-4758.	5.5	41
30	Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. Journal of Materials Chemistry, 2012, 22, 17079.	6.7	38
31	Electrochemical-reduction-assisted assembly of ternary Ag nanoparticles/polyoxometalate/graphene nanohybrids and their activity in the electrocatalysis of oxygen reduction. RSC Advances, 2015, 5, 74447-74456.	3.6	38
32	Cobalt Nanoparticles and Atomic Sites in Nitrogenâ€Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide. Small, 2020, 16, e1902860.	10.0	38
33	Polyoxometalate-Assisted Galvanic Replacement Synthesis of Silver Hierarchical Dendritic Structures. Crystal Growth and Design, 2011, 11, 3424-3431.	3.0	34
34	Bottomâ€up Design of Bimetallic Cobalt–Molybdenum Carbides/Oxides for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 4157-4164.	3.3	33
35	A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity. Talanta, 2016, 146, 41-48.	5.5	29
36	Polyoxometalate-Mediated Green Synthesis of Graphene and Metal Nanohybrids: High-Performance Electrocatalysts. Journal of Cluster Science, 2014, 25, 711-740.	3.3	28

#	Article	IF	CITATIONS
37	Transitionâ€Metal Oxides/Carbides@Carbon Nanotube Composites as Multifunctional Electrocatalysts for Challenging Oxidations and Reductions. Chemistry - A European Journal, 2019, 25, 11098-11104.	3.3	28
38	Graphene–CdS quantum dots–polyoxometalate composite films for efficient photoelectrochemical water splitting and pollutant degradation. Physical Chemistry Chemical Physics, 2014, 16, 26016-26023.	2.8	27
39	An overall water-splitting polyoxometalate catalyst for the electromicrobial conversion of CO ₂ in neutral water. Journal of Materials Chemistry A, 2018, 6, 9915-9921.	10.3	27
40	Sequential Synthesis of 3 d–3 d, 3 d–4 d, and 3 d–5 d Hybrid Polyoxometalates Electrocatalytic Oxygen Reduction Reactions. Chemistry - A European Journal, 2015, 21, 12153-12160.	and Appl	ication to the
41	Mixed-Valent Mn16-Containing Heteropolyanions: Tuning of Oxidation State and Associated Physicochemical Properties. Inorganic Chemistry, 2016, 55, 2755-2764.	4.0	25
42	Self-Activation of a Polyoxometalate-Derived Composite Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 12671-12676.	5.1	25
43	Boron Doped ZIFâ€67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzymeâ€Free Hydrogen Peroxide Biosensor. Advanced Materials Technologies, 2017, 2, 1700224.	5.8	22

44	Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 13096-13102.	10.3	22
45	Top-down synthesis of polyoxometalate-like sub-nanometer molybdenum-oxo clusters as high-performance electrocatalysts. Chemical Science, 2020, 11, 1043-1051.	7.4	21

46	High nuclearity Co polyoxometalate based artificial photosynthesis for solar hydrogen generation. International Journal of Hydrogen Energy, 2013, 38, 9954-9960.	7.1	20
47	Modular Design of Nobleâ€Metalâ€Free Mixed Metal Oxide Electrocatalysts for Complete Water Splitting. Angewandte Chemie, 2019, 131, 4692-4696.	2.0	19

48	Artificial photosynthesis for solar hydrogen generation over transition-metal substituted Keggin-type titanium tungstate. New Journal of Chemistry, 2014, 38, 1315-1320.	2.8	17
49	Highly efficient electrochemically driven water oxidation by graphene-supported mixed-valent Mn16-containing polyoxometalate. Green Energy and Environment, 2016, 1, 138-143.	8.7	17
50	Solvatochromic Fluorescence Emission of an Anthranol Derivative without Typical Donor–Acceptor Structure: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2015, 119, 2761-2769.	3.1	15
51	Polyoxometalate–CdS quantum dots co-sensitized TiO2 nanorods array: enhanced charge separation and light to electricity conversion efficiency. RSC Advances, 2013, 3, 8351.	3.6	14

52	Simple and efficient polyoxomolybdate-mediated synthesis of novel graphene and metal nanohybrids for versatile applications. Journal of Colloid and Interface Science, 2018, 514, 507-516.	9.4	14
53	Electrocatalytic Oxygen Evolution by Hierarchically Structured Cobalt–Iron Composites. ACS Applied Materials & Interfaces, 2021, 13, 19048-19054.	8.0	13
54	First Examples of Hybrids Based on Graphene and a Ringâ€Shaped Macrocyclic Polyoxometalate: Synthesis, Characterization, and Properties. European Journal of Inorganic Chemistry, 2013, 2013, 1882-1889.	2.0	12

Rongji Liu

#	Article	IF	CITATIONS
55	Photocatalytic Reduction Synthesis of Ternary Ag Nanoparticles/Polyoxometalate/Graphene Nanohybrids and Its Activity in the Electrocatalysis of Oxygen Reduction. Journal of Cluster Science, 2016, 27, 241-256.	3.3	12
56	Efficient Tetra-Functional Electrocatalyst with Synergetic Effect of Different Active Sites for Multi-Model Energy Conversion and Storage. ACS Applied Materials & Interfaces, 2020, 12, 23017-23027.	8.0	12
57	Polyoxometalate-like sub-nanometer molybdenum(<scp>vi</scp>)-oxo clusters for sensitive, selective and stable H ₂ O ₂ sensing. Chemical Communications, 2020, 56, 9465-9468.	4.1	8
58	A 3d-printed composite electrode for sustained electrocatalytic oxygen evolution. Chemical Communications, 2020, 56, 8476-8479.	4.1	7
59	Electrocatalysts: Bottomâ€Up Construction of Triazineâ€Based Frameworks as Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction (Adv. Mater. 20/2015). Advanced Materials, 2015, 27, 3189-3189.	21.0	6
60	High Protonâ€Conductivity in Covalently Linked Polyoxometalateâ€Organoboronic Acidâ€Polymers. Angewandte Chemie, 2021, 133, 17090-17094.	2.0	5
61	Biosensors: Boron Doped ZIFâ€67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzymeâ€Free Hydrogen Peroxide Biosensor (Adv. Mater. Technol. 12/2017). Advanced Materials Technologies, 2017, 2, 1770058.	5.8	4
62	Bulk Nanostructuring of Janusâ€Type Metal Electrodes. Chemistry - A European Journal, 2020, 26, 11109-11112.	3.3	4
63	Controlled Synthesis of Silver Micro/Nano Leaves for Oxygen Reduction and CO2 Reduction. Journal of Nanoscience and Nanotechnology, 2018, 18, 5763-5769.	0.9	0
64	Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Nearâ€Neutral pH. Angewandte Chemie, 0, , .	2.0	0