
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RBFOX2 is required for establishing RNA regulatory networks essential for heart development. Nucleic Acids Research, 2022, 50, 2270-2286.	6.5	20
2	A Systematic Review of Ebstein's Anomaly with Left Ventricular Noncompaction. Journal of Cardiovascular Development and Disease, 2022, 9, 115.	0.8	4
3	Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Science Advances, 2021, 7, .	4.7	43
4	Genetic and Developmental Contributors to Aortic Stenosis. Circulation Research, 2021, 128, 1330-1343.	2.0	10
5	Four-dimensional Ultrasound for Characterization of In Vivo Murine Aortic Valve Dynamics. Structural Heart, 2021, 5, 27-27.	0.2	0
6	KPT-330 Prevents Aortic Valve Calcification via a Novel C/EBPÎ ² Signaling Pathway. Circulation Research, 2021, 128, 1300-1316.	2.0	10
7	Molecular and Mechanical Mechanisms of Calcification Pathology Induced by Bicuspid Aortic Valve Abnormalities. Frontiers in Cardiovascular Medicine, 2021, 8, 677977.	1.1	9
8	Tgfβ1-Cthrc1 Signaling Plays an Important Role in the Short-Term Reparative Response to Heart Valve Endothelial Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2923-2942.	1.1	4
9	Pulmonary Vein Stenosis: Moving From Past Pessimism to Future Optimism. Frontiers in Pediatrics, 2021, 9, 747812.	0.9	7
10	Loss of ADAMTS19 causes progressive non-syndromic heart valve disease. Nature Genetics, 2020, 52, 40-47.	9.4	46
11	Disruption of foxc1 genes in zebrafish results in dosage-dependent phenotypes overlapping Axenfeld-Rieger syndrome. Human Molecular Genetics, 2020, 29, 2723-2735.	1.4	15
12	Smooth Muscle α-Actin Expression in Mitral Valve Interstitial Cells is Important for Mediating Extracellular Matrix Remodeling. Journal of Cardiovascular Development and Disease, 2020, 7, 32.	0.8	7
13	Biology and Biomechanics of the Heart Valve Extracellular Matrix. Journal of Cardiovascular Development and Disease, 2020, 7, 57.	0.8	34
14	Effect ofÂLeft and Right Coronary Flow Waveforms on Aortic Sinus Hemodynamics and Leaflet Shear Stress: Correlation with Calcification Locations. Annals of Biomedical Engineering, 2020, 48, 2796-2808.	1.3	9
15	Constructing and evaluating caspase-activatable adeno-associated virus vector for gene delivery to the injured heart. Journal of Controlled Release, 2020, 328, 834-845.	4.8	2
16	The Endocardium and Heart Valves. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036723.	2.3	26
17	MG53 Protein Protects Aortic Valve Interstitial Cells From Membrane Injury and Fibrocalcific Remodeling. Journal of the American Heart Association, 2019, 8, e009960.	1.6	19
18	Dynamic Expression Profiles of Sox9 in Embryonic, Post Natal, and Adult Heart Valve Cell Populations. Anatomical Record, 2019, 302, 108-116.	0.8	7

#	Article	IF	CITATIONS
19	miR-486 is modulated by stretch and increases ventricular growth. JCI Insight, 2019, 4, .	2.3	26
20	MG53 Protein Protects Aortic Valve Interstitial Cells from Membrane Injury and Fibrocalcific Remodeling. FASEB Journal, 2019, 33, 833.16.	0.2	0
21	Calcific Aortic Valve Disease: a Developmental Biology Perspective. Current Cardiology Reports, 2018, 20, 21.	1.3	51
22	Macrophage Transitions in Heart Valve Development and Myxomatous Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 636-644.	1.1	57
23	Molecular and Cellular Developments in Heart Valve Development and Disease. , 2018, , 207-239.		Ο
24	The Genetic Regulation of Aortic Valve Development and Calcific Disease. Frontiers in Cardiovascular Medicine, 2018, 5, 162.	1.1	25
25	Postnatal and Adult Aortic Heart Valves HaveÂDistinctive Transcriptional Profiles Associated With Valve Tissue Growth and Maintenance Respectively. Frontiers in Cardiovascular Medicine, 2018, 5, 30.	1.1	11
26	Genetic basis of aortic valvular disease. Current Opinion in Cardiology, 2017, 32, 239-245.	0.8	22
27	HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development. Cell Reports, 2017, 19, 1602-1613.	2.9	50
28	MG53-Mediated Protection in Heart Valve Biology. Biophysical Journal, 2017, 112, 221a.	0.2	0
29	Contribution of Extra ardiac Cells in Murine Heart Valves is Ageâ€Đependent. Journal of the American Heart Association, 2017, 6, .	1.6	51
30	Oxidative Stress in Cardiac Valve Development. Oxidative Stress in Applied Basic Research and Clinical Practice, 2017, , 1-18.	0.4	2
31	Utilizing Microscopy To Understand Mechanisms Of Heart Valve Morphogenesis. Microscopy and Microanalysis, 2016, 22, 1020-1021.	0.2	0
32	Growth and maturation of heart valves leads to changes in endothelial cell distribution, impaired function, decreased metabolism and reduced cell proliferation. Journal of Molecular and Cellular Cardiology, 2016, 100, 72-82.	0.9	28
33	The cardiac matrix revolution: Post-translational modification of Scleraxis. Journal of Molecular and Cellular Cardiology, 2016, 93, 106-107.	0.9	2
34	Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Scientific Reports, 2016, 6, 30896.	1.6	45
35	Valve Endothelial Cell–Derived Tgfβ1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 328-338.	1.1	54
36	Dynamic Heterogeneity of the Heart Valve Interstitial Cell Population in Mitral Valve Health and Disease. Journal of Cardiovascular Development and Disease, 2015, 2, 214-232.	0.8	26

#	Article	IF	CITATIONS
37	To â€~cell' and back!. Journal of Molecular and Cellular Cardiology, 2015, 81, 94-95.	0.9	0
38	Hemodynamic Characterization of a Mouse Model for Investigating the Cellular and Molecular Mechanisms of Neotissue Formation in Tissue-Engineered Heart Valves. Tissue Engineering - Part C: Methods, 2015, 21, 987-994.	1.1	15
39	Cost-Benefit Analysis of Robotic versus Nonrobotic Minimally Invasive Mitral Valve Surgery. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2015, 10, 90-95.	0.4	9
40	Cost-Benefit Analysis of Robotic versus Nonrobotic Minimally Invasive Mitral Valve Surgery. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2015, 10, 90-95.	0.4	0
41	Sox9- and Scleraxis-Cre Lineage Fate Mapping in Aortic and Mitral Valve Structures. Journal of Cardiovascular Development and Disease, 2014, 1, 163-176.	0.8	Ο
42	RNA-Seq Analysis to Identify Novel Roles of Scleraxis during Embryonic Mouse Heart Valve Remodeling. PLoS ONE, 2014, 9, e101425.	1.1	11
43	A microfluidic shear device that accommodates parallel high and low stress zones within the same culturing chamber. Biomicrofluidics, 2014, 8, 054106.	1.2	22
44	Genetics of Valvular Heart Disease. Current Cardiology Reports, 2014, 16, 487.	1.3	57
45	Etiology of Valvular Heart Disease. Circulation Journal, 2014, 78, 1801-1807.	0.7	45
46	Isolation of Murine Valve Endothelial Cells. Journal of Visualized Experiments, 2014, , .	0.2	5
47	Tgfβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. Journal of Molecular and Cellular Cardiology, 2013, 65, 137-146.	0.9	38
48	Increased Dietary Intake of Vitamin A Promotes Aortic Valve Calcification In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 285-293.	1.1	28
49	Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. Journal of Molecular and Cellular Cardiology, 2013, 60, 27-35.	0.9	142
50	Snai1 is important for avian epicardial cell transformation and motility. Developmental Dynamics, 2013, 242, 699-708.	0.8	12
51	Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Human Molecular Genetics, 2012, 21, 2288-2297.	1.4	83
52	Collagen XIV is important for growth and structural integrity of the myocardium. Journal of Molecular and Cellular Cardiology, 2012, 53, 626-638.	0.9	60
53	Is aviation a good model to study human errors in health care?. American Journal of Surgery, 2012, 203, 798-801.	0.9	25
54	Heart Valve Development, Maintenance, and Disease. Current Topics in Developmental Biology, 2012, 100, 203-232.	1.0	72

#	Article	IF	CITATIONS
55	Myocardial Alternative RNA Splicing and Gene Expression Profiling in Early Stage Hypoplastic Left Heart Syndrome. PLoS ONE, 2012, 7, e29784.	1.1	25
56	FGF23 induces left ventricular hypertrophy. Journal of Clinical Investigation, 2011, 121, 4393-4408.	3.9	1,684
57	Sox9 Transcriptionally Represses Spp1 to Prevent Matrix Mineralization in Maturing Heart Valves and Chondrocytes. PLoS ONE, 2011, 6, e26769.	1.1	37
58	Molecular markers of cardiomyopathy in cyanotic pediatric heart disease. Progress in Pediatric Cardiology, 2011, 32, 19-23.	0.2	3
59	Mmp15 is a direct target of Snai1 during endothelial to mesenchymal transformation and endocardial cushion development. Developmental Biology, 2011, 359, 209-221.	0.9	51
60	Molecular and developmental mechanisms of congenital heart valve disease. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 526-534.	1.6	55
61	Reduced Sox9 Function Promotes Heart Valve Calcification Phenotypes In Vivo. Circulation Research, 2010, 106, 712-719.	2.0	109
62	Differential Changes in TGF-β/BMP Signaling Pathway in the Right Ventricular Myocardium of Newborns With Hypoplastic Left Heart Syndrome. Journal of Cardiac Failure, 2010, 16, 628-634.	0.7	32
63	Temporal and spatial expression of collagens during murine atrioventricular heart valve development and maintenance. Developmental Dynamics, 2008, 237, 3051-3058.	0.8	53
64	Scleraxis Is Required for Cell Lineage Differentiation and Extracellular Matrix Remodeling During Murine Heart Valve Formation In Vivo. Circulation Research, 2008, 103, 948-956.	2.0	104
65	Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Developmental Biology, 2007, 305, 120-132.	0.9	162
66	BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Developmental Biology, 2006, 292, 290-302.	0.9	91
67	Hearts and bones: Shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Developmental Biology, 2006, 294, 292-302.	0.9	206
68	ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. Developmental Dynamics, 2006, 235, 3295-3305.	0.8	58
69	Extracellular Matrix Remodeling and Organization in Developing and Diseased Aortic Valves. Circulation Research, 2006, 98, 1431-1438.	2.0	371
70	Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Developmental Dynamics, 2004, 230, 239-250.	0.8	229
71	Characterisation of Wnt gene expression during the differentiation of murine embryonic stem cells in vitro: role of Wnt3 in enhancing haematopoietic differentiation. Mechanisms of Development, 2001, 103, 49-59.	1.7	78
72	mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mechanisms of Development, 2000, 97, 109-116.	1.7	111