
Martin M. Gossner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7907035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 2019, 574, 671-674.	27.8	760
2	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
3	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	27.8	404
4	Landscape simplification filters species traits and drives biotic homogenization. Nature Communications, 2015, 6, 8568.	12.8	399
5	Conservation in Brazil needs to include nonâ€forest ecosystems. Diversity and Distributions, 2015, 21, 1455-1460.	4.1	273
6	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
7	Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge. Biological Conservation, 2015, 191, 139-149.	4.1	218
8	Influences de la sylviculture sur le risque de dégâts biotiques et abiotiques dans les peuplements forestiers. Annals of Forest Science, 2009, 66, 701-701.	2.0	212
9	The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodiversity and Conservation, 2008, 17, 2979-3001.	2.6	204
10	Current Nearâ€ŧoâ€Nature Forest Management Effects on Functional Trait Composition of Saproxylic Beetles in Beech Forests. Conservation Biology, 2013, 27, 605-614.	4.7	188
11	The impact of evenâ€aged and unevenâ€aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology, 2018, 55, 267-278.	4.0	188
12	Multiple forest attributes underpin the supply of multiple ecosystem services. Nature Communications, 2018, 9, 4839.	12.8	182
13	Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28140-28149.	7.1	164
14	Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. Forest Ecology and Management, 2017, 391, 86-95.	3.2	151
15	Integrating ecosystem functions into restoration ecology—recent advances and future directions. Restoration Ecology, 2016, 24, 722-730.	2.9	140
16	Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nature Communications, 2016, 7, 10697.	12.8	125
17	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	27.8	123
18	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117

#	Article	IF	CITATIONS
19	Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecological Indicators, 2012, 23, 323-331.	6.3	102
20	Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. Forest Ecology and Management, 2014, 329, 166-176.	3.2	95
21	Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography, 2015, 38, 499-509.	4.5	95
22	Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecology Letters, 2019, 22, 170-180.	6.4	92
23	Towards an ecological traitâ€data standard. Methods in Ecology and Evolution, 2019, 10, 2006-2019.	5.2	91
24	Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Animal Conservation, 2014, 17, 154-162.	2.9	89
25	Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises. PLoS ONE, 2014, 9, e106940.	2.5	85
26	Deadwood enrichment in European forests – Which tree species should be used to promote saproxylic beetle diversity?. Biological Conservation, 2016, 201, 92-102.	4.1	82
27	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
28	Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. Journal of Applied Ecology, 2015, 52, 69-77.	4.0	79
29	Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology and Evolution, 2020, 4, 1204-1212.	7.8	76
30	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	3.2	75
31	Key ecological research questions for Central European forests. Basic and Applied Ecology, 2018, 32, 3-25.	2.7	71
32	Landâ€use effects on the functional distinctness of arthropod communities. Ecography, 2015, 38, 889-900.	4.5	67
33	Radar vision in the mapping of forest biodiversity from space. Nature Communications, 2019, 10, 4757.	12.8	66
34	Mind the gaps when using science to address conservation concerns. Biodiversity and Conservation, 2013, 22, 2413-2427.	2.6	65
35	Cork oak pests: a review of insect damage and management. Annals of Forest Science, 2016, 73, 219-232.	2.0	63
36	Landâ€use type and intensity differentially filter traits in above―and belowâ€ground arthropod communities. Journal of Animal Ecology, 2017, 86, 511-520.	2.8	62

#	Article	IF	CITATIONS
37	Native Fauna on Exotic Trees: Phylogenetic Conservatism and Geographic Contingency in Two Lineages of Phytophages on Two Lineages of Trees. American Naturalist, 2009, 173, 599-614.	2.1	59
38	Multiâ€ŧaxa approach shows consistent shifts in arthropod functional traits along grassland landâ€use intensity gradient. Ecology, 2016, 97, 754-764.	3.2	59
39	Forest management and regional tree composition drive the host preference of saproxylic beetle communities. Journal of Applied Ecology, 2015, 52, 753-762.	4.0	56
40	Losers, winners, and opportunists: How grassland landâ€use intensity affects orthopteran communities. Ecosphere, 2016, 7, e01545.	2.2	54
41	Three-dimensional partitioning of diversity informs state-wide strategies for the conservation of saproxylic beetles. Biological Conservation, 2010, 143, 625-633.	4.1	53
42	The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. European Journal of Forest Research, 2006, 125, 221-235.	2.5	52
43	Effect of pitfall trap type and diameter on vertebrate byâ€catches and ground beetle (Coleoptera:) Tj ETQq1 1 0	.784314 r 5.2	gBT /Overlock
44	Implications from largeâ€scale spatial diversity patterns of saproxylic beetles for the conservation of European Beech forests. Insect Conservation and Diversity, 2013, 6, 162-169.	3.0	51
45	Multiple Glacial Refugia of the Low-Dispersal Ground Beetle Carabus irregularis: Molecular Data Support Predictions of Species Distribution Models. PLoS ONE, 2013, 8, e61185.	2.5	51
46	Seed consumption and dispersal of ant-dispersed plants by slugs. Oecologia, 2010, 163, 681-693.	2.0	49
47	Tree diversity drives abundance and spatiotemporal βâ€diversity of true bugs (Heteroptera). Ecological Entomology, 2009, 34, 772-782.	2.2	48
48	Opinion Paper: Forest management and biodiversity. Web Ecology, 2014, 14, 3-10.	1.6	47
49	A summary of eight traits of Coleoptera, Hemiptera, Orthoptera and Araneae, occurring in grasslands in Germany. Scientific Data, 2015, 2, 150013.	5.3	46
50	Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. Forest Ecology and Management, 2017, 400, 607-620.	3.2	46
51	Forest management intensity measures as alternative to stand properties for quantifying effects on biodiversity. Ecosphere, 2014, 5, 1-111.	2.2	43
52	Resource-Mediated Indirect Effects of Grassland Management on Arthropod Diversity. PLoS ONE, 2014, 9, e107033.	2.5	42
53	Light intensity affects spatial distribution of Heteroptera in deciduous forests. European Journal of Entomology, 2009, 106, 241-252.	1.2	42
54	Disentangling the effects of forest-stand type and dead-wood origin of the early successional stage on the diversity of wood-inhabiting fungi. Forest Ecology and Management, 2016, 377, 161-169.	3.2	41

#	Article	IF	CITATIONS
55	Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility?. Agriculture, Ecosystems and Environment, 2013, 177, 1-9.	5.3	40
56	Effect of dead wood enrichment in the canopy and on the forest floor on beetle guild composition. Forest Ecology and Management, 2013, 302, 404-413.	3.2	40
57	Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170198.	2.6	40
58	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	5.8	40
59	Management intensity and temporary conversion to other landâ€use types affect plant diversity and species composition of subtropical grasslands in southern Brazil. Applied Vegetation Science, 2016, 19, 589-599.	1.9	39
60	Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach. Journal of Applied Ecology, 2020, 57, 2075-2085.	4.0	39
61	Effects of forest management on herbivorous insects in temperate Europe. Forest Ecology and Management, 2019, 437, 232-245.	3.2	38
62	Can multiâ€ŧaxa diversity in European beech forest landscapes be increased by combining different management systems?. Journal of Applied Ecology, 2020, 57, 1363-1375.	4.0	38
63	The importance of heterogeneity revisited from a multiscale and multitaxa approach. Biological Conservation, 2013, 166, 212-220.	4.1	37
64	Arthropod species richness in the Norway Spruce (Picea abies (L.) Karst.) canopy along an elevation gradient. Forest Ecology and Management, 2010, 259, 1513-1521.	3.2	36
65	A review on plant diversity and forest management of European beech forests. European Journal of Forest Research, 2016, 135, 51-67.	2.5	35
66	Modelling response of insect trap captures to pheromone dose. Ecological Modelling, 2006, 197, 247-257.	2.5	34
67	Effects of landâ€use intensity on arthropod species abundance distributions in grasslands. Journal of Animal Ecology, 2015, 84, 143-154.	2.8	34
68	Effects of management on aquatic treeâ€hole communities in temperate forests are mediated by detritus amount and water chemistry. Journal of Animal Ecology, 2016, 85, 213-226.	2.8	33
69	Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biological Conservation, 2018, 228, 70-78.	4.1	33
70	Plant and arthropod communities in young oak stands: are they determined by site history?. Biodiversity and Conservation, 2008, 17, 3165-3180.	2.6	32
71	Eleven years' data of grassland management in Germany. Biodiversity Data Journal, 2019, 7, e36387.	0.8	32
72	Single host trees in a closed forest canopy matrix: a highly fragmented landscape?. Journal of Applied Entomology, 2007, 131, 613-620.	1.8	31

#	Article	IF	CITATIONS
73	LiDARâ€derived canopy structure supports the moreâ€individuals hypothesis for arthropod diversity in temperate forests. Oikos, 2018, 127, 814-824.	2.7	31

From water striders to water bugs: the molecular diversity of aquatic Heteroptera (Gerromorpha,) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50 3_1

75	Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient. Ecology, 2016, 97, 754-64.	3.2	30
76	Are Gastropods, Rather than Ants, Important Dispersers of Seeds of Myrmecochorous Forest Herbs?. American Naturalist, 2012, 179, 124-131.	2.1	29
77	Effect of forest management on temperate ant communities. Ecosphere, 2018, 9, e02303.	2.2	28
78	Phylogenetic isolation of host trees affects assembly of local Heteroptera communities. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2227-2236.	2.6	27
79	Functional traits drive ground beetle community structures in Central European forests: Implications for conservation. Biological Conservation, 2017, 213, 5-12.	4.1	27
80	Land-use components, abundance of predatory arthropods, and vegetation height affect predation rates in grasslands. Agriculture, Ecosystems and Environment, 2019, 270-271, 84-92.	5.3	27
81	Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Science Advances, 2021, 7, .	10.3	27
82	Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agriculture, Ecosystems and Environment, 2017, 237, 143-153.	5.3	26
83	Presence and dynamics of ambrosia beetles and other xylophagous insects in a Mediterranean cork oak forest following fire. Forest Ecology and Management, 2017, 404, 45-54.	3.2	25
84	Wood resource and not fungi attract earlyâ€successional saproxylic species of <i>Heteroptera –</i> an experimental approach. Insect Conservation and Diversity, 2014, 7, 533-542.	3.0	24
85	Decadal effects of landscapeâ€wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity. Diversity and Distributions, 2019, 25, 430-441.	4.1	23
86	What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database. Journal of Animal Ecology, 2021, 90, 1934-1947.	2.8	23
87	Limitations to the use of arthropods as temperate forests indicators. Biodiversity and Conservation, 2014, 23, 945-962.	2.6	22
88	Invertebrate herbivory decreases along a gradient of increasing land-use intensity in German grasslands. Basic and Applied Ecology, 2014, 15, 347-352.	2.7	22
89	Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?. Bulletin of Entomological Research, 2015, 105, 101-109.	1.0	22
90	Historical and recent land use affects ecosystem functions in subtropical grasslands in Brazil. Ecosphere, 2017, 8, e02032.	2.2	22

#	Article	IF	CITATIONS
91	Insights from regional and shortâ€ŧerm biodiversity monitoring datasets are valuable: a reply to Daskalova <i>et al</i> . 2021. Insect Conservation and Diversity, 2021, 14, 144-148.	3.0	22
92	Shifting tree species composition affects biodiversity of multiple taxa in Central European forests. Forest Ecology and Management, 2021, 498, 119552.	3.2	22
93	Influence of arthropod sampling solutions on insect genotyping reliability. Entomologia Experimentalis Et Applicata, 2010, 135, 217-223.	1.4	20
94	Differential Responses of Herbivores and Herbivory to Management in Temperate European Beech. PLoS ONE, 2014, 9, e104876.	2.5	19
95	Protecting the Forests While Allowing Removal of Damaged Trees may Imperil Saproxylic Insect Biodiversity in the Hyrcanian Beech Forests of Iran. Conservation Letters, 2016, 9, 106-113.	5.7	19
96	Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Diversity and Distributions, 2019, 25, 783-796.	4.1	18
97	Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. Journal of Biogeography, 2019, 46, 1054-1065.	3.0	18
98	Temporal Changes in Randomness of Bird Communities across Central Europe. PLoS ONE, 2014, 9, e112347.	2.5	18
99	Search for topâ€down and bottomâ€up drivers of latitudinal trends in insect herbivory in oak trees in Europe. Global Ecology and Biogeography, 2021, 30, 651-665.	5.8	18
100	Insect attraction to herbivore-induced beech volatiles under different forest management regimes. Oecologia, 2014, 176, 569-580.	2.0	17
101	Effects of management on ambrosia beetles and their antagonists in European beech forests. Forest Ecology and Management, 2019, 437, 126-133.	3.2	17
102	Restorationâ€oriented forest management affects community assembly patterns of deadwoodâ€dependent organisms. Journal of Applied Ecology, 2020, 57, 2429-2440.	4.0	17
103	Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback. Tree Physiology, 2021, 41, 683-696.	3.1	17
104	Climate Change Effects on Trophic Interactions of Bark Beetles in Inner Alpine Scots Pine Forests. Forests, 2021, 12, 136.	2.1	17
105	The impact of forest management on litter-dwelling invertebrates: a subtropical–temperate contrast. Biodiversity and Conservation, 2011, 20, 2133-2147.	2.6	16
106	Cross-scale effects of land use on the functional composition of herbivorous insect communities. Landscape Ecology, 2019, 34, 2001-2015.	4.2	16
107	The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory. Oecologia, 2019, 190, 651-664.	2.0	16
108	National Forest Inventories capture the multifunctionality of managed forests in Germany. Forest Ecosystems, 2021, 8, .	3.1	16

#	Article	IF	CITATIONS
109	Früher Laubfall der Buche wärend der Sommertrockenheit 2018: Resistenz oder Schwähesymptom?. Schweizerische Zeitschrift Fur Forstwesen, 2020, 171, 257-269.	0.1	16
110	Traits mediate niches and coâ€occurrences of forest beetles in ways that differ among bioclimatic regions. Journal of Biogeography, 2021, 48, 3145-3157.	3.0	16
111	Functional structure of European forest beetle communities is enhanced by rare species. Biological Conservation, 2022, 267, 109491.	4.1	16
112	Coverage based diversity estimates of facultative saproxylic species highlight the importance of deadwood for biodiversity. Forest Ecology and Management, 2022, 517, 120275.	3.2	16
113	Aphidophagous insect communities in tree crowns of the neophyte Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and Norway spruce (Picea abies L.). Journal of Applied Entomology, 2005, 129, 81-88.	1.8	15
114	Lessons learned from a longâ€ŧerm irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. Ecological Monographs, 2022, 92, e1507.	5.4	15
115	Insect herbivory facilitates the establishment of an invasive plant pathogen. ISME Communications, 2021, 1, .	4.2	14
116	Does plant phylogenetic diversity increase invertebrate herbivory in managed grasslands?. Basic and Applied Ecology, 2017, 20, 40-50.	2.7	13
117	Über die Invasivitäder Douglasie und ihre Auswirkungen auf Boden und Biodiversitä Schweizerische Zeitschrift Fur Forstwesen, 2021, 172, 118-127.	0.1	13
118	Temporal and spatial dynamics in soil acoustics and their relation to soil animal diversity. PLoS ONE, 2022, 17, e0263618.	2.5	12
119	The influence of species traits and q-metrics on scale-specific β-diversity components of arthropod communities of temperate forests. Landscape Ecology, 2011, 26, 411-424.	4.2	11
120	Population restoration of the nocturnal bird Athene noctua in Western Europe: an example of evidence based species conservation. Biodiversity and Conservation, 2015, 24, 1743-1753.	2.6	11
121	Longâ€ŧerm restoration success of insect herbivore communities in seminatural grasslands: a functional approach. Ecological Applications, 2020, 30, e02133.	3.8	11
122	A three year study of the phenology of insect larvae (Coleoptera, Diptera) in water-filled tree holes in the canopy of a beech tree. European Journal of Entomology, 0, 115, 524-534.	1.2	11
123	Effects of selection felling and gap felling on forest arthropod communities: a case study in a spruce-beech stand of southern Bavaria. European Journal of Forest Research, 2006, 125, 345-360.	2.5	10
124	The use of forest inventory data for placing flight-interception traps in the forest canopy. Entomologia Experimentalis Et Applicata, 2011, 140, 35-44.	1.4	10
125	Living in Heterogeneous Woodlands – Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?. PLoS ONE, 2015, 10, e0144217.	2.5	10
126	Diversity and Ecology of Saproxylic Hemiptera. Zoological Monographs, 2018, , 263-317.	1.1	10

#	Article	IF	CITATIONS
127	Site- and tree-related factors affecting colonization of cork oaks Quercus suber L. by ambrosia beetles in Tunisia. Annals of Forest Science, 2019, 76, 1.	2.0	10
128	What makes a species a priority for nature conservation?. Animal Conservation, 2020, 23, 28-35.	2.9	10
129	Just beautiful?! What determines butterfly species for nature conservation. Biodiversity and Conservation, 2021, 30, 2481-2493.	2.6	10
130	Biotic threats for 23 major non-native tree species in Europe. Scientific Data, 2021, 8, 210.	5.3	10
131	Searching for the Optimal Sampling Solution: Variation in Invertebrate Communities, Sample Condition and DNA Quality. PLoS ONE, 2016, 11, e0148247.	2.5	10
132	Spinnen aus Baumkronen-Klopfproben (Arachnida: Araneae), mit Anmerkungen zu <i>Cinetata gradata</i> (Linyphiidae) und <i>Theridion boesenbergi</i> (Theridiidae) Arachnologische Mitteilungen, 2006, 31, 23-39.	0.3	10
133	Where Is the Extended Phenotype in the Wild? The Community Composition of Arthropods on Mature Oak Trees Does Not Depend on the Oak Genotype. PLoS ONE, 2015, 10, e0115733.	2.5	9
134	Phylogeography of the ladybird Iberorhyzobius rondensis, a potential biological control agent of the invasive alien pine bast scale Matsucoccus feytaudi. BioControl, 2015, 60, 59-69.	2.0	9
135	Assessing Insecticide Effects in Forests: A Tree-Level Approach Using Unmanned Aerial Vehicles. Journal of Economic Entomology, 2019, 112, 2686-2694.	1.8	9
136	Direct and indirect effects of forest management on tree-hole inhabiting aquatic organisms and their functional traits. Science of the Total Environment, 2020, 704, 135418.	8.0	9
137	The use of water-filled tree holes by vertebrates in temperate forests. Wildlife Biology, 2021, 2021, .	1.4	9
138	Present and historical landscape structure shapes current species richness in Central European grasslands. Landscape Ecology, 2022, 37, 745-762.	4.2	9
139	Emission of CO ₂ and CH ₄ From 13 Deadwood Tree Species Is Linked to Tree Species Identity and Management Intensity in Forest and Grassland Habitats. Global Biogeochemical Cycles, 2022, 36, .	4.9	9
140	Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes. PLoS ONE, 2016, 11, e0155549.	2.5	8
141	Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multiâ€scale approach. Diversity and Distributions, 2021, 27, 439-453.	4.1	8
142	Spread and Severity of Ash Dieback in Switzerland – Tree Characteristics and Landscape Features Explain Varying Mortality Probability. Frontiers in Forests and Global Change, 2021, 4, .	2.3	8
143	Among stand heterogeneity is key for biodiversity in managed beech forests but does not question the value of unmanaged forests: Response to Bruun and Heilmannâ€Clausen (2021). Journal of Applied Ecology, 2021, 58, 1817-1826.	4.0	8
144	Land-use intensity and landscape structure drive the acoustic composition of grasslands. Agriculture, Ecosystems and Environment, 2022, 328, 107845.	5.3	8

#	Article	IF	CITATIONS
145	Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs. Scientific Data, 2022, 9, 62.	5.3	8
146	Herbivory on the pedunculate oak along an urbanization gradient in Europe: Effects of impervious surface, local tree cover, and insect feeding guild. Ecology and Evolution, 2022, 12, e8709.	1.9	8
147	Minimal effects on genetic structuring of a fungusâ€dwelling saproxylic beetle after recolonisation of a restored forest. Journal of Applied Ecology, 2018, 55, 2933-2943.	4.0	7
148	The diversity of saproxylic insects (Coleoptera, Heteroptera) on four tree species of the Hyrcanian forest in Iran. Journal of Insect Conservation, 2018, 22, 607-625.	1.4	7
149	Mobility costs and energy uptake mediate the effects of morphological traits on species' distribution and abundance. Ecology, 2020, 101, e03121.	3.2	7
150	Using sentinel prey to assess predation pressure from terrestrial predators in water-filled tree holes. European Journal of Entomology, 0, 117, 226-234.	1.2	7
151	Shortâ€distance attraction of saproxylic Heteroptera to olfactory cues. Insect Conservation and Diversity, 2016, 9, 254-257.	3.0	5
152	Animal-Mediated Ecosystem Process Rates in Forests and Grasslands are Affected by Climatic Conditions and Land-Use Intensity. Ecosystems, 2021, 24, 467-483.	3.4	5
153	Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient. Ecology, 2016, , .	3.2	5
154	Disentangling the importance of space and host tree for the beta-diversity of beetles, fungi, and bacteria: Lessons from a large dead-wood experiment. Biological Conservation, 2022, 268, 109521.	4.1	5
155	Effects of habitat structure and land-use intensity on the genetic structure of the grasshopper species <i>Chorthippus parallelus</i> . Royal Society Open Science, 2014, 1, 140133.	2.4	4
156	Morphometric measures of Heteroptera sampled in grasslands across three regions of Germany. Ecology, 2015, 96, 1154-1154.	3.2	4
157	Habitat availability drives the distribution–abundance relationship in phytophagous true bugs in managed grasslands. Ecology, 2017, 98, 2561-2573.	3.2	4
158	Fagus sylvatica forests and their faunal diversity: A regional and European perspective. Annals of Forest Research, 2014, .	1.1	4
159	Passive restoration of subtropical grasslands leads to incomplete recovery of ant communities in early successional stages. Biological Conservation, 2021, 264, 109387.	4.1	4
160	Vertical Stratification of Insect Species Developing in Water-Filled Tree Holes. Frontiers in Forests and Global Change, 2022, 4, .	2.3	4
161	Beech forest management does not affect the infestation rate of the beech scale <i>Cryptococcus fagisuga</i> across three regions in Germany. Agricultural and Forest Entomology, 2015, 17, 197-204.	1.3	3
162	Side Effects of Insecticides on Leafâ€Miners and Gallâ€Inducers Depend on Species Ecological Traits and Competition with Leafâ€Chewers. Environmental Toxicology and Chemistry, 2021, 40, 1171-1187.	4.3	3

#	Article	IF	CITATIONS
163	Einfluss von Klima und Baumvitalitäauf den Befall von Waldföhren durch rindenbrütende Insekten. Schweizerische Zeitschrift Fur Forstwesen, 2018, 169, 251-259.	0.1	3
164	City life of mycorrhizal and wood-inhabiting macrofungi: Importance of urban areas for maintaining fungal biodiversity. Landscape and Urban Planning, 2022, 221, 104360.	7.5	3
165	Wiederbesiedlung der WaldbrandflÄ e he von Leuk durch Gliederfļsser. Schweizerische Zeitschrift Fur Forstwesen, 2018, 169, 290-298.	0.1	2
166	From the South and from the North? – Quilnus marcosi Heiss & Baena and Aradus angularis J. Sahlberg, two flat bug species new for Central Europe (Hemiptera, Heteroptera, Aradidae). Alpine Entomology, 2018, 2, 7-14.	0.2	2
167	Towards an Ecological Trait-data Standard Vocabulary. Biodiversity Information Science and Standards, 0, 3, .	0.0	1
168	Daly and Doyen's Introduction to Insect Biology and Diversity. 3rd ed.—James B. Whitfield and Alexander H. Purcell III Systematic Biology, 2013, 62, 499-500.	5.6	0
169	Springtime Bark-Splitting of Acer pseudoplatanus in Germany. Forests, 2019, 10, 1106.	2.1	0
170	Molecular biogeography of the fungus-dwelling saproxylic beetle Bolitophagus reticulatus indicates rapid expansion from glacial refugia. Biological Journal of the Linnean Society, 2021, 133, 766-778.	1.6	0
171	Reply to MikolÃ;Å;'s comment on "Opinion Paper: Forest management and biodiversity" by Schulze et al. (2014). Web Ecology, 2014, 14, 75-77.	1.6	0
172	Tracking sucking herbivory with nitrogen isotope labelling: Lessons from an individual trait-based approach. Basic and Applied Ecology, 2022, 63, 104-114.	2.7	0