George Z Kyzas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7906931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. Plant Growth Regulation, 2022, 97, 375-418.	1.8	55
2	Why reuse spent adsorbents? The latest challenges and limitations. Science of the Total Environment, 2022, 822, 153612.	3.9	65
3	Low-Cost Activated Carbon for Petroleum Products Clean-Up. Processes, 2022, 10, 314.	1.3	6
4	Chromium(VI) Removal from Water by Lanthanum Hybrid Modified Activated Carbon Produced from Coconut Shells. Nanomaterials, 2022, 12, 1067.	1.9	16
5	Can nanomaterials support the diagnosis and treatment of human infertility? A preliminary review. Life Sciences, 2022, 299, 120539.	2.0	11
6	Differentiation in the expression of toxic effects of polyethylene-microplastics on two freshwater fish species: Size matters. Science of the Total Environment, 2022, 830, 154603.	3.9	44
7	Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. Science of the Total Environment, 2022, 832, 155014.	3.9	74
8	Recent trends in mesoporous silica nanoparticles of rode-like morphology for cancer theranostics: A review. Journal of Molecular Structure, 2022, 1261, 132922.	1.8	27
9	Cost Profile of Membranes That Use Polymers of Intrinsic Microporosity (PIMs). Membranes, 2022, 12, 433.	1.4	0
10	Statistical and physical interpretation of dye adsorption onto low-cost biomass by using simulation methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128969.	2.3	5
11	Arsenic(III) and Arsenic(V) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments. Sustainability, 2022, 14, 5222.	1.6	14
12	Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chemico-Biological Interactions, 2022, 361, 109964.	1.7	34
13	Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect, 2022, 7, .	0.7	10
14	Benzene Removal from Aqueous Solutions by Heterogeneous Catalytic Ozonation Process with Magnesium Oxide Nanoparticles. Ozone: Science and Engineering, 2021, 43, 147-162.	1.4	6
15	Nanomaterials for Parkinson disease: Recent progress. Journal of Molecular Structure, 2021, 1231, 129698.	1.8	29
16	Response surface methodology for the removal of nitrate ions by adsorption onto copper oxide nanoparticles. Journal of Molecular Structure, 2021, 1231, 129686.	1.8	24
17	A review in nanopolymers for drilling fluids applications. Journal of Molecular Structure, 2021, 1227, 129702.	1.8	41
18	Risk return profile of nanomaterials. Journal of Molecular Structure, 2021, 1228, 129740.	1.8	3

#	Article	IF	CITATIONS
19	Progress in natural polymer engineered biomaterials for transdermal drug delivery systems. Materials Today Chemistry, 2021, 19, 100382.	1.7	51
20	Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sciences, 2021, 266, 118914.	2.0	104
21	Deferasirox-loaded pluronic nanomicelles: Synthesis, characterization, in vitro and in vivo studies. Journal of Molecular Liquids, 2021, 323, 114605.	2.3	35
22	Effectiveness of graphene quantum dot nanoparticles in the presence of hydrogen peroxide for the removal of ciprofloxacin from aqueous media: response surface methodology. Separation Science and Technology, 2021, 56, 2124-2140.	1.3	6
23	Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polymer Bulletin, 2021, 78, 4877-4898.	1.7	18
24	Role of bacteria and algae in remediation of heavy metals from wastewater treatment plants. , 2021, , 23-46.		1
25	Nanotitanium photocatalytic technology in wastewater treatment. , 2021, , 739-758.		Ο
26	Microplastics in Mediterranean Coastal Countries: A Recent Overview. Journal of Marine Science and Engineering, 2021, 9, 98.	1.2	23
27	Adsorption Evaluation for the Removal of Nickel, Mercury, and Barium Ions from Single-Component and Mixtures of Aqueous Solutions by Using an Optimized Biobased Chitosan Derivative. Polymers, 2021, 13, 232.	2.0	21
28	Nanodiagnosis and nanotreatment of colorectal cancer: an overview. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	43
29	Polymeric Materials for Water and Wastewater Management. Polymers, 2021, 13, 168.	2.0	2
30	Carbonaceous Adsorbents Derived from Agricultural Sources for the Removal of Pramipexole Pharmaceutical Model Compound from Synthetic Aqueous Solutions. Processes, 2021, 9, 253.	1.3	8
31	Chitosan/poly(vinyl alcohol) modified adsorbents for the removal of heavy metals from wastewaters. , 2021, , 47-81.		1
32	Nanomaterials in Cementitious Composites: An Update. Molecules, 2021, 26, 1430.	1.7	38
33	Manganese/cerium nanoferrites: Synthesis and toxicological effects by intraperitoneal administration in rats. Inorganic Chemistry Communication, 2021, 125, 108433.	1.8	9
34	Controlled-release Formulations of Trifluralin Herbicide by Interfacial Polymerization as a Tool for Environmental Hazards. Biointerface Research in Applied Chemistry, 2021, 11, 13866-13877.	1.0	4
35	Removal of Acid Dye from Aqueous Solutions with Adsorption onto Modified Wheat Bran – Modeling with Artificial Neural Networks. Biointerface Research in Applied Chemistry, 2021, 11, 14044-14056.	1.0	6
36	Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules, 2021, 26, 1770.	1.7	95

#	Article	IF	CITATIONS
37	Barium/Cobalt@Polyethylene Glycol Nanocomposites for Dye Removal from Aqueous Solutions. Polymers, 2021, 13, 1161.	2.0	21
38	A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. Journal of Molecular Structure, 2021, 1230, 129928.	1.8	28
39	Green nanoparticles to treat patients with Malaria disease: An overview. Journal of Molecular Structure, 2021, 1229, 129857.	1.8	21
40	On the combination of modern sorbents with cost analysis: A review. Journal of Molecular Structure, 2021, 1229, 129841.	1.8	1
41	Biochemical effects of deferasirox and deferasirox-loaded nanomicellesin iron-intoxicated rats. Life Sciences, 2021, 270, 119146.	2.0	16
42	Chitosan Adsorbent Derivatives for Pharmaceuticals Removal from Effluents: A Review. Macromol, 2021, 1, 130-154.	2.4	27
43	Simultaneous removal of anti-inflammatory pharmaceutical compounds from an aqueous mixture with adsorption onto chitosan zwitterionic derivative. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126498.	2.3	21
44	Nanomaterials and Nanotechnology in Wastewater Treatment. Nanomaterials, 2021, 11, 1539.	1.9	12
45	Sunlight sterilized, recyclable and super hydrophobic anti-COVID laser-induced graphene mask formulation for indelible usability. Journal of Molecular Structure, 2021, 1233, 130100.	1.8	32
46	From Microbubbles to Nanobubbles: Effect on Flotation. Processes, 2021, 9, 1287.	1.3	16
47	Insights into the toxicity of biomaterials microparticles with a combination of cellular and oxidative biomarkers. Journal of Hazardous Materials, 2021, 413, 125335.	6.5	13
48	Sawdust for the Removal of Heavy Metals from Water: A Review. Molecules, 2021, 26, 4318.	1.7	25
49	Quercetin-loaded F127 nanomicelles: Antioxidant activity and protection against renal injury induced by gentamicin in rats. Life Sciences, 2021, 276, 119420.	2.0	32
50	Adverse effects polystyrene microplastics exert on zebrafish heart– Molecular to individual level. Journal of Hazardous Materials, 2021, 416, 125969.	6.5	58
51	Optimization of Cadmium Ions Biosorption Onto Trichoderma Fungi. Biointerface Research in Applied Chemistry, 2021, 12, 3316-3331.	1.0	1
52	Bulk nanobubbles,Âgeneration methods and potential applications. Current Opinion in Colloid and Interface Science, 2021, 54, 101455.	3.4	53
53	Adsorption of Uranium, Mercury, and Rare Earth Elements from Aqueous Solutions onto Magnetic Chitosan Adsorbents: A Review. Polymers, 2021, 13, 3137.	2.0	22
54	Graphene functionalized hybrid nanomaterials for industrial-scale applications: A systematic review. Journal of Molecular Structure, 2021, 1239, 130518.	1.8	37

#	Article	IF	CITATIONS
55	Graphene Oxide Synthesis, Properties and Characterization Techniques: A Comprehensive Review. ChemEngineering, 2021, 5, 64.	1.0	33
56	Nanomaterials as Nanofertilizers and Nanopesticides: An Overview. ChemistrySelect, 2021, 6, 8645-8663.	0.7	72
57	Microplastics in the environment: Sampling, pretreatment, analysis and occurrence based on current and newly-exploited chromatographic approaches. Science of the Total Environment, 2021, 794, 148725.	3.9	26
58	Acrylic acid copolymers as adsorbent materials for the removal of anti-inflammatory pharmaceuticals from synthetic biomedical wastewaters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127382.	2.3	4
59	Activated Porous Carbon Derived from Tea and Plane Tree Leaves Biomass for the Removal of Pharmaceutical Compounds from Wastewaters. Antibiotics, 2021, 10, 65.	1.5	21
60	Progress in the Application of Nanoparticles and Graphene as Drug Carriers and on the Diagnosis of Brain Infections. Molecules, 2021, 26, 186.	1.7	56
61	How to Face Skin Cancer with Nanomaterials: A Review. Biointerface Research in Applied Chemistry, 2021, 11, 11931-11955.	1.0	15
62	From Bubbles to Nanobubbles. Nanomaterials, 2021, 11, 2592.	1.9	14
63	Activated Carbons for Arsenic Removal from Natural Waters and Wastewaters: A Review. Water (Switzerland), 2021, 13, 2982.	1.2	18
64	A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water. Journal of Carbon Research, 2021, 7, 74.	1.4	6
65	Plant-based nanoparticles prepared from protein containing tribenuron-methyl: fabrication, characterization, and application. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	11
66	Synthetic Oil-Spills Decontamination by Using Sawdust and Activated Carbon from Aloe vera as Absorbents. Biointerface Research in Applied Chemistry, 2021, 11, 11778-11796.	1.0	2
67	Investigation of Duplex Brass Membranes with Metallography, Permeability and Treatments: Work-Hardening, Annealing and Quenching. ChemEngineering, 2021, 5, 76.	1.0	0
68	Toxicity and Functional Tissue Responses of Two Freshwater Fish after Exposure to Polystyrene Microplastics. Toxics, 2021, 9, 289.	1.6	33
69	Bulk nanobubbles: Production and investigation of their formation/stability mechanism. Journal of Colloid and Interface Science, 2020, 564, 371-380.	5.0	103
70	Effect of agitation on batch adsorption process facilitated by using nanobubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125440.	2.3	12
71	Nanomaterials for the treatment and diagnosis of Alzheimer's disease: An overview. NanoImpact, 2020, 20, 100251.	2.4	78
72	Praseodymium-doped cadmium tungstate (CdWO4) nanoparticles for dye degradation with sonocatalytic process. Polyhedron, 2020, 190, 114792.	1.0	45

#	Article	IF	CITATIONS
73	Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125516.	2.3	54
74	Behavioral effects of zinc oxide nanoparticles on the brain of rats. Inorganic Chemistry Communication, 2020, 119, 108131.	1.8	31
75	Photo―and Magnetothermally Responsive Nanomaterials for Therapy, Controlled Drug Delivery and Imaging Applications. ChemistrySelect, 2020, 5, 12590-12609.	0.7	49
76	Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. Nanomaterials, 2020, 10, 1696.	1.9	67
77	Residue Char Derived from Microwave-Assisted Pyrolysis of Sludge as Adsorbent for the Removal of Methylene Blue from Aqueous Solutions. Processes, 2020, 8, 979.	1.3	2
78	Patents of nanomaterials related with cancer treatment applications. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	1
79	Applied Cleaning Methods of Oil Residues from Industrial Tanks. Processes, 2020, 8, 569.	1.3	13
80	New insights into transformation pathways of a mixture of cytostatic drugs using Polyester-TiO2 films: Identification of intermediates and toxicity assessment. Science of the Total Environment, 2020, 741, 140394.	3.9	27
81	Polystyrene Magnetic Nanocomposites as Antibiotic Adsorbents. Polymers, 2020, 12, 1313.	2.0	32
82	Wastewater Treatment Processes: Part I. Processes, 2020, 8, 334.	1.3	3
83	Acid Dye Removal from Aqueous Solution by Using Neodymium(III) Oxide Nanoadsorbents. Nanomaterials, 2020, 10, 556.	1.9	67
84	Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 2020, 1211, 128107.	1.8	258
85	Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers, 2020, 12, 1397.	2.0	281
86	Adsorption of copper ions onto chitosan/poly(vinyl alcohol) beads functionalized with poly(ethylene) Tj ETQqO	0 0 ழூ∎T /0	Dverlgck 10 T
87	Biosorbents for heavy metal removal from dilute aqueous solution. , 2020, , 105-132.		1
88	Optimization and genetic programming modeling of humic acid adsorption onto prepared activated carbon and modified by multi-wall carbon nanotubes. Polyhedron, 2020, 179, 114354.	1.0	18
89	On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges. Nanomaterials, 2020, 10, 852.	1.9	102
90	Green Separation and Extraction Processes: Part I. Processes, 2020, 8, 374.	1.3	1

#	Article	IF	CITATIONS
91	Gum-based cerium oxide nanoparticles for antimicrobial assay. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	30
92	Petroleum Hydrocarbon Removal from Wastewaters: A Review. Processes, 2020, 8, 447.	1.3	80
93	Borophene and Boron Fullerene Materials in Hydrogen Storage: Opportunities and Challenges. ChemSusChem, 2020, 13, 3754-3765.	3.6	62
94	Sorption behavior of water vapor of wood treated by chitosan polymer. European Journal of Wood and Wood Products, 2020, 78, 483-491.	1.3	10
95	Synthesis, characterization, and intraperitoneal biochemical studies of zinc oxide nanoparticles in Rattus norvegicus. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	13
96	Cancer theranostic applications of MXene nanomaterials: Recent updates. Nano Structures Nano Objects, 2020, 22, 100457.	1.9	53
97	Low-cost route for top-down synthesis of over- and low-oxidized graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124928.	2.3	32
98	Nanomaterials in Cosmetics: Recent Updates. Nanomaterials, 2020, 10, 979.	1.9	210
99	Chitosan Grafted with Biobased 5-Hydroxymethyl-Furfural as Adsorbent for Copper and Cadmium Ions Removal. Polymers, 2020, 12, 1173.	2.0	23
100	Nanohybrid Graphene-Based Materials for Advanced Wastewater Treatment. , 2020, , 91-123.		0
101	Geometrical Representation of Gas Properties. Journal of Engineering Science and Technology Review, 2020, 13, 1-3.	0.2	0
102	Activated carbons from banana peels for the removal of nickel ions. International Journal of Environmental Science and Technology, 2019, 16, 667-680.	1.8	33
103	Determination of metals in Greek wines. International Journal of Environmental Science and Technology, 2019, 16, 347-356.	1.8	4
104	Evaluating the adsorption of Ni(II) and Cu(II) on spirulina biomass by statistical physics formalism. Journal of Industrial and Engineering Chemistry, 2019, 80, 461-470.	2.9	11
105	Photocatalytic disinfection and purification of water employing reduced graphene oxide/TiO ₂ composites. Journal of Chemical Technology and Biotechnology, 2019, 94, 3905-3914.	1.6	16
106	Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environmental Chemistry Letters, 2019, 17, 1645-1666.	8.3	94
107	Lignocellulosic Composites from Acetylated Sunflower Stalks. Applied Sciences (Switzerland), 2019, 9, 646.	1.3	12
108	Graphene aerogels for oil absorption. Interface Science and Technology, 2019, , 173-197.	1.6	13

#	Article	IF	CITATIONS
109	Flotation in the 2010s. Interface Science and Technology, 2019, , 43-68.	1.6	2
110	Nanotechnology and wood science. Interface Science and Technology, 2019, , 199-216.	1.6	2
111	Low-cost materials in gas-phase adsorption. Interface Science and Technology, 2019, , 125-149.	1.6	0
112	The impact of raw materials cost on the adsorption process. Interface Science and Technology, 2019, 30, 1-14.	1.6	3
113	New trends in molecular imprinting techniques. Interface Science and Technology, 2019, 30, 151-172.	1.6	7
114	Flotation. Interface Science and Technology, 2019, 30, 15-42.	1.6	7
115	Effective Dye Degradation by Graphene Oxide Supported Manganese Oxide. Processes, 2019, 7, 40.	1.3	43
116	Cross-Linked Chitosan-Based Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019, , 381-425.	0.6	12
117	Cost Estimation of Polymeric Adsorbents. Polymers, 2019, 11, 925.	2.0	27
118	Removal of antibiotics in aqueous media by using new synthesized bio-based poly(ethylene) Tj ETQq0 0 0 rgBT /C	Dverlock 1 4.2	0 Tf 50 382 1 68
119	Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review. Nanomaterials, 2019, 9, 607.	1.9	91
120	Inorganic Nanoadsorbent: Akagan $ ilde{A}$ ©ite in Wastewater Treatment. , 2019, , 337-358.		1
121	The Flotation Process Can Go Green. Processes, 2019, 7, 138.	1.3	36
122	Nanohybrid Chitosans in Sorption Technology. , 2019, , 67-84.		0
123	Chitosan Grafted Adsorbents for Diclofenac Pharmaceutical Compound Removal from Single-Component Aqueous Solutions and Mixtures. Polymers, 2019, 11, 497.	2.0	43
124	Adsorption Domain Theory. , 2019, , 317-335.		1
125	Effect of Grafting on Chitosan Adsorbents. , 2019, , 49-66.		2

Biobased Poly(ethylene furanoate) Polyester/TiO2 Supported Nanocomposites as Effective Photocatalysts for Anti-inflammatory/Analgesic Drugs. Molecules, 2019, 24, 564.

1.7 27

#	Article	IF	CITATIONS
127	Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chemical Engineering Journal, 2019, 356, 91-97.	6.6	153
128	Synthesis of activated carbon from food waste. Environmental Chemistry Letters, 2019, 17, 429-438.	8.3	92
129	Determining biokinetic coefficients for the upflow anaerobic sludge blanket reactor treating sugarcane wastewater in hot climate conditions. International Journal of Environmental Science and Technology, 2019, 16, 2231-2238.	1.8	5
130	A Review for the Synthesis of Silk Fibroin Nanoparticles with Different Techniques and Their Ability to be Used for Drug Delivery. Current Analytical Chemistry, 2019, 15, 339-348.	0.6	26
131	Dye Removal from Aqueous Solutions by Sorption onto Chitosan Derivatives. , 2019, , 705-708.		Ο
132	Nanohybrid Graphene Oxide for Advanced Wastewater Treatment. , 2019, , 233-253.		0
133	Use of nanoparticles for dye adsorption: Review. Journal of Dispersion Science and Technology, 2018, 39, 836-847.	1.3	102
134	Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: Effects of water quality parameters and predictive modeling. Chemical Engineering Journal, 2018, 335, 290-300.	6.6	87
135	Graphene composites as dye adsorbents: Review. Chemical Engineering Research and Design, 2018, 129, 75-88.	2.7	122
136	Emerging nanocomposite biomaterials as biomedical adsorbents: an overview. Composite Interfaces, 2018, 25, 415-454.	1.3	11
137	A rotating sample cell for in situ measurements of adsorption with x-rays. Review of Scientific Instruments, 2018, 89, 123113.	0.6	3
138	Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles. Environmental Science and Pollution Research, 2018, 25, 34262-34276.	2.7	73
139	Zero-Cost Agricultural Wastes as Sources for Activated Carbons Synthesis: Lead Ions Removal from Wastewaters. Proceedings (mdpi), 2018, 2, .	0.2	8
140	Basic Dye Removal with Sorption onto Low-Cost Natural Textile Fibers. Processes, 2018, 6, 166.	1.3	26
141	Activated Carbon from Food Waste. Environmental Chemistry for A Sustainable World, 2018, , 159-182.	0.3	6
142	Flotation in Water and Wastewater Treatment. Processes, 2018, 6, 116.	1.3	92
143	Effect of humic acid on pharmaceuticals adsorption using sulfonic acid grafted chitosan. Journal of Molecular Liquids, 2017, 230, 1-5.	2.3	44
144	A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 2017, 33, 572-588.	0.6	52

#	Article	IF	CITATIONS
145	A review for coffee adsorbents. Journal of Molecular Liquids, 2017, 229, 555-565.	2.3	142
146	Chitosan adsorbents for dye removal: a review. Polymer International, 2017, 66, 1800-1811.	1.6	140
147	Various flotation techniques for metal ions removal. Journal of Molecular Liquids, 2017, 225, 260-264.	2.3	104
148	Novel Isocyanate-Modified Carrageenan Polymer Materials: Preparation, Characterization and Application Adsorbent Materials of Pharmaceuticals. Polymers, 2017, 9, 595.	2.0	13
149	Chitin Adsorbents for Toxic Metals: A Review. International Journal of Molecular Sciences, 2017, 18, 114.	1.8	129
150	Electroflotation process: A review. Journal of Molecular Liquids, 2016, 220, 657-664.	2.3	92
151	Adsorption of As(III) and As(V) onto colloidal microparticles of commercial cross-linked polyallylamine (Sevelamer) from single and binary ion solutions. Journal of Colloid and Interface Science, 2016, 474, 137-145.	5.0	20
152	Pharmaceuticals pollution of aquaculture and its management in China. Journal of Molecular Liquids, 2016, 223, 781-789.	2.3	106
153	Synthesis and physicochemical properties of a new biocompatible chitosan grafted with 5-hydroxymethylfurfural. Journal of Molecular Liquids, 2016, 222, 268-271.	2.3	16
154	Technologies of winery wastewater treatment: a critical approach. Desalination and Water Treatment, 2016, 57, 3372-3386.	1.0	24
155	Methods of arsenic wastes recycling: Focus on flotation. Journal of Molecular Liquids, 2016, 214, 37-45.	2.3	18
156	Molecular docking and 3D-QSAR studies on the glucocorticoid receptor antagonistic activity of hydroxylated polychlorinated biphenyls. SAR and QSAR in Environmental Research, 2016, 27, 87-99.	1.0	8
157	Green activated carbons from different waste materials for the removal of iron from real wastewater samples of Nag River, India. Journal of Molecular Liquids, 2016, 216, 688-692.	2.3	29
158	Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices. Analytica Chimica Acta, 2016, 913, 63-75.	2.6	80
159	Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?. Journal of Molecular Liquids, 2016, 218, 174-185.	2.3	231
160	Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 74-83.	2.3	178
161	Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. Journal of Molecular Liquids, 2016, 213, 381-389.	2.3	91
162	Novel Approaches in Designing Natural/Synthetic Materials for Environmental Applications. Advances in Materials Science and Engineering, 2015, 2015, 1-1.	1.0	2

#	Article	IF	CITATIONS
163	Swelling–adsorption interactions during mercury and nickel ions removal by chitosan derivatives. Separation and Purification Technology, 2015, 149, 92-102.	3.9	52
164	Low-cost hemp biomaterials for nickel ions removal from aqueous solutions. Journal of Molecular Liquids, 2015, 209, 209-218.	2.3	49
165	Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review. Marine Drugs, 2015, 13, 312-337.	2.2	359
166	New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. Journal of Molecular Liquids, 2015, 209, 87-93.	2.3	172
167	Nanoadsorbents for pollutants removal: A review. Journal of Molecular Liquids, 2015, 203, 159-168.	2.3	327
168	Effectively designed molecularly imprinted polymers for selective isolation of the antidiabetic drug metformin and its transformation product guanylurea from aqueous media. Analytica Chimica Acta, 2015, 866, 27-40.	2.6	59
169	Synthesis and characterization of modified carrageenan microparticles for the removal of pharmaceuticals from aqueous solutions. Colloids and Surfaces B: Biointerfaces, 2015, 127, 256-265.	2.5	41
170	Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions. Open Chemistry, 2015, 13, .	1.0	102
171	Composts as Biosorbents for Decontamination of Various Pollutants: a Review. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	74
172	Recent Advances in Nanocomposite Materials of Graphene Derivatives with Polysaccharides. Materials, 2015, 8, 652-683.	1.3	77
173	Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids, 2015, 209, 77-86.	2.3	189
174	Palygorskite changes heavy metal bioavailability and microbial functional diversity in sewage sludge composting. Environmental Technology (United Kingdom), 2015, 36, 2855-2862.	1.2	12
175	Removal of beta-blockers from aqueous media by adsorption onto graphene oxide. Science of the Total Environment, 2015, 537, 411-420.	3.9	135
176	Characterization of binding properties of silver ion-imprinted polymers with equilibrium and kinetic models. Journal of Molecular Liquids, 2015, 212, 133-141.	2.3	15
177	Synthesis, characterization, and catalytic evaluation of Co 3 O 4 \hat{I}^3 -Al 2 O 3 as methane combustion catalysts: Significance of Co species and the redox cycle. Applied Catalysis B: Environmental, 2015, 168-169, 42-50.	10.8	90
178	Alternative use of cross-linked polyallylamine (known as Sevelamer pharmaceutical compound) as biosorbent. Journal of Colloid and Interface Science, 2015, 442, 49-59.	5.0	11
179	Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. Chemical Engineering Research and Design, 2015, 97, 135-144.	2.7	107
180	Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chemical Engineering Journal, 2015, 259, 438-448.	6.6	270

#	Article	IF	CITATIONS
181	Green Adsorbents. , 2015, , .		1
182	Synthesis of Green Adsorbents. , 2015, , 55-68.		0
183	Economic Perspectives and Future Trends. , 2015, , 89-97.		0
184	Composition of Industrial Wastewaters. , 2015, , 3-34.		0
185	Flotation of Biological Materials. Processes, 2014, 2, 293-310.	1.3	7
186	New Biosorbent Materials: Selectivity and Bioengineering Insights. Processes, 2014, 2, 419-440.	1.3	22
187	Nano-Adsorbent for Arsenates: Iron Oxyhydroxide Impregnated Microporous Activated Carbon. Current Environmental Engineering, 2014, 1, 51-58.	0.6	4
188	Green Adsorbents for Wastewaters: A Critical Review. Materials, 2014, 7, 333-364.	1.3	291
189	Molecular Imprinting for High-Added Value Metals: An Overview of Recent Environmental Applications. Advances in Materials Science and Engineering, 2014, 2014, 1-8.	1.0	16
190	Poly(itaconic acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb(II) and Cd(II) Uptake. Langmuir, 2014, 30, 120-131.	1.6	164
191	Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology and Biotechnology, 2014, 89, 196-205.	1.6	322
192	The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids and Surfaces B: Biointerfaces, 2014, 113, 467-476.	2.5	102
193	Adsorption/desorption of a dye by a chitosan derivative: Experiments and phenomenological modeling. Chemical Engineering Journal, 2014, 248, 327-336.	6.6	75
194	Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 2014, 270, 102-109.	6.5	359
195	Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite. Bioresource Technology, 2014, 152, 399-406.	4.8	110
196	Wet air oxidation for the decolorization of dye wastewater: An overview of the last two decades. Chinese Journal of Catalysis, 2014, 35, 1-7.	6.9	79
197	Agricultural peels for dye adsorption: A review of recent literature. Journal of Molecular Liquids, 2014, 200, 381-389.	2.3	223
198	Advanced low-swelling chitosan/graphite oxide-based biosorbents. Materials Letters, 2014, 128, 46-49.	1.3	22

#	Article	IF	CITATIONS
199	Magnetic modification of microporous carbon for dye adsorption. Journal of Colloid and Interface Science, 2014, 430, 166-173.	5.0	75
200	Nanocrystalline Akaganeite as Adsorbent for Surfactant Removal from Aqueous Solutions. Materials, 2013, 6, 184-197.	1.3	27
201	Magnetic Graphene Oxide: Effect of Preparation Route on Reactive Black 5 Adsorption. Materials, 2013, 6, 1360-1376.	1.3	94
202	N-(2-Carboxybenzyl) grafted chitosan as adsorptive agent for simultaneous removal of positively and negatively charged toxic metal ions. Journal of Hazardous Materials, 2013, 244-245, 29-38.	6.5	63
203	The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters. Materials, 2013, 6, 5131-5158.	1.3	156
204	Graphite oxide/chitosan composite for reactive dye removal. Chemical Engineering Journal, 2013, 217, 256-265.	6.6	239
205	Functionalization of Graphite Oxide with Magnetic Chitosan for the Preparation of a Nanocomposite Dye Adsorbent. Langmuir, 2013, 29, 1657-1668.	1.6	329
206	Oxidation time effect of activated carbons for drug adsorption. Chemical Engineering Journal, 2013, 234, 491-499.	6.6	29
207	Environmental friendly technology for the removal of pharmaceutical contaminants from wastewaters using modified chitosan adsorbents. Chemical Engineering Journal, 2013, 222, 248-258.	6.6	107
208	Optimization of chitosan and \hat{l}^2 -cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydrate Polymers, 2013, 91, 198-208.	5.1	159
209	On the simultaneous adsorption of a reactive dye and hexavalent chromium from aqueous solutions onto grafted chitosan. Journal of Colloid and Interface Science, 2013, 407, 432-441.	5.0	59
210	Mercury(II) Removal with Modified Magnetic Chitosan Adsorbents. Molecules, 2013, 18, 6193-6214.	1.7	126
211	Copper removal from aqueous systems with coffee wastes as low-cost materials. E3S Web of Conferences, 2013, 1, 25004.	0.2	7
212	A Decolorization Technique with Spent "Greek Coffee―Grounds as Zero-Cost Adsorbents for Industrial Textile Wastewaters. Materials, 2012, 5, 2069-2087.	1.3	46
213	Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions. Materials, 2012, 5, 1826-1840.	1.3	127
214	Modelling the effect of pre-swelling on adsorption dynamics of dyes by chitosan derivatives. Chemical Engineering Science, 2012, 81, 220-230.	1.9	37
215	Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chemical Engineering Journal, 2012, 189-190, 148-159.	6.6	222
216	Treatment of real effluents from dyeing reactor: Experimental and modeling approach by adsorption onto chitosan. Chemical Engineering Journal, 2011, 168, 577-585.	6.6	77

#	Article	IF	CITATIONS
217	Relating Interactions of Dye Molecules with Chitosan to Adsorption Kinetic Data. Langmuir, 2010, 26, 9617-9626.	1.6	66
218	Reactive and basic dyes removal by sorption onto chitosan derivatives. Journal of Colloid and Interface Science, 2009, 331, 32-39.	5.0	170
219	Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs). Chemical Engineering Journal, 2009, 149, 263-272.	6.6	92
220	Copper and chromium(VI) removal by chitosan derivatives—Equilibrium and kinetic studies. Chemical Engineering Journal, 2009, 152, 440-448.	6.6	177
221	Low-Swelling Chitosan Derivatives as Biosorbents for Basic Dyes. Langmuir, 2008, 24, 4791-4799.	1.6	68
222	Chitosan Derivatives as Biosorbents for Basic Dyes. Langmuir, 2007, 23, 7634-7643.	1.6	179
223	Hydrothermally produced activated carbons from zero-cost green sources for cobalt ions removal. , 0, 123, 288-299.		10