Sang Ouk Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7905584/publications.pdf

Version: 2024-02-01

290 papers 24,261 citations

82 h-index 147 g-index

310 all docs

310 docs citations

310 times ranked

28492 citing authors

#	Article	IF	CITATIONS
1	Largeâ€Area Uniform 1â€nmâ€Level Amorphous Carbon Layers from 3D Conformal Polymer Brushes. A "Nextâ€Generation―Cu Diffusion Barrier?. Advanced Materials, 2022, 34, e2110454.	11.1	5
2	Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 12011-12037.	4.0	36
3	Molecular-Level Lubrication Effect of 0D Nanodiamonds for Highly Bendable Graphene Liquid Crystalline Fibers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13601-13610.	4.0	10
4	Largeâ€Area Uniform 1â€nmâ€Level Amorphous Carbon Layers from 3D Conformal Polymer Brushes. A "Nextâ€Generation―Cu Diffusion Barrier? (Adv. Mater. 15/2022). Advanced Materials, 2022, 34, .	11.1	0
5	Characteristic dual-domain composite structure of reduced graphene oxide and its application to higher specific capacitance. Chemical Engineering Journal, 2022, 446, 137390.	6.6	13
6	A 2D Ultrathin Nanopatterned Interlayer to Suppress Lithium Dendrite Growth in Highâ€Energy Lithiumâ€Metal Anodes. Advanced Materials, 2022, 34, .	11.1	18
7	Wide-Range Size Fractionation of Graphene Oxide by Flow Field-Flow Fractionation. ACS Nano, 2022, 16, 9172-9182.	7.3	3
8	Tailored growth of graphene oxide liquid crystals with controlled polymer crystallization in GO-polymer composites. Nanoscale, 2021, 13, 2720-2727.	2.8	8
9	Synthesis of carboxylic acid-functionalized polymethacrylate-b-polystyrene as an Ag ion-loadable block copolymer thin film template. Polymer, 2021, 217, 123462.	1.8	3
10	Discovery of Single-Atom Catalyst: Customized Heteroelement Dopants on Graphene. Accounts of Materials Research, 2021, 2, 394-406.	5. 9	19
11	Hetero-Dimensional 2D Ti ₃ C ₂ T _{<i>x</i>} MXene and 1D Graphene Nanoribbon Hybrids for Machine Learning-Assisted Pressure Sensors. ACS Nano, 2021, 15, 10347-10356.	7.3	57
12	Self-Assembled Nano–Lotus Pod Metasurface for Light Trapping. ACS Photonics, 2021, 8, 1616-1622.	3.2	8
13	Multidimensional Ti ₃ C ₂ T _{<i>x</i>} MXene Architectures <i>via</i> Interfacial Electrochemical Self-Assembly. ACS Nano, 2021, 15, 10058-10066.	7.3	46
14	Carbon Nanofibers as Potential Catalyst Support for Fuel Cell Cathodes: A Review. Energy & Samp; Fuels, 2021, 35, 11761-11799.	2.5	37
15	Wafer-Scale Unidirectional Alignment of Supramolecular Columns on Faceted Surfaces. ACS Nano, 2021, 15, 11762-11769.	7.3	1
16	CNT–rGO Hydrogel-Integrated Fabric Composite Synthesized via an Interfacial Gelation Process for Wearable Supercapacitor Electrodes. ACS Omega, 2021, 6, 19578-19585.	1.6	13
17	Universal Alignment of Graphene Oxide in Suspensions and Fibers. ACS Nano, 2021, 15, 13453-13462.	7.3	15
18	N-Dopant-Mediated Growth of Metal Oxide Nanoparticles on Carbon Nanotubes. Nanomaterials, 2021, 11, 1882.	1.9	1

#	Article	IF	CITATIONS
19	Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction. Chemical Engineering Journal, 2021, 426, 131063.	6.6	43
20	Alloying of Alkali Metals with Tellurene. Advanced Energy Materials, 2021, 11, 2003248.	10.2	11
21	Spectral Instability of Layered Mixed Halide Perovskites Results from Anion Phase Redistribution and Selective Hole Injection. ACS Nano, 2021, 15, 1486-1496.	7.3	18
22	Monodisperse Carbon Nitride Nanosheets as Multifunctional Additives for Efficient and Durable Perovskite Solar Cells. ACS Applied Materials & (2021, 13, 61215-61226).	4.0	9
23	Smart Nanostructured Materials based on Selfâ€Assembly of Block Copolymers. Advanced Functional Materials, 2020, 30, 1902049.	7.8	56
24	Ultra-large area graphene hybrid hydrogel for customized performance supercapacitors: High volumetric, areal energy density and potential wearability. Electrochimica Acta, 2020, 332, 135492.	2.6	25
25	Longitudinal unzipping of 2D transition metal dichalcogenides. Nature Communications, 2020, $11,5032$.	5.8	18
26	2D graphene oxide liquid crystal for real-world applications: Energy, environment, and antimicrobial. APL Materials, 2020, 8, .	2.2	24
27	2D Materials Decorated with Ultrathin and Porous Graphene Oxide for High Stability and Selective Surface Activity. Advanced Materials, 2020, 32, e2002723.	11.1	33
28	Largeâ€Area Alignment of Supramolecular Columns by Photothermal Laser Writing. Advanced Materials, 2020, 32, 2002620.	11.1	7
29	Mussel Inspired Highly Aligned Ti ₃ C ₂ T _{<i>x</i>} MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS Nano, 2020, 14, 11722-11732.	7.3	212
30	Multidisciplinary Materials Research in KAIST Over the Last 50 Years. Advanced Materials, 2020, 32, e2000696.	11.1	1
31	Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors. Nanoscale, 2020, 12, 20239-20249.	2.8	35
32	Deep-Learning-Based Deconvolution of Mechanical Stimuli with Ti ₃ C ₂ T _{<i>x</i>} MXene Electromagnetic Shield Architecture <i>via</i> Dual-Mode Wireless Signal Variation Mechanism. ACS Nano, 2020, 14, 11962-11972.	7.3	25
33	Highly Aligned Carbon Nanowire Array by E-Field Directed Assembly of PAN-Containing Block Copolymers. ACS Applied Materials & Interfaces, 2020, 12, 58113-58121.	4.0	6
34	Self-Planarization of High-Performance Graphene Liquid Crystalline Fibers by Hydration. ACS Central Science, 2020, 6, 1105-1114.	5.3	16
35	Air-Stable Perovskite Nanostructures with Dimensional Tunability by Polymerizable Structure-Directing Ligands. ACS Applied Materials & Structure-Directing Ligands. ACS Applied Materials & Structure-Directing Ligands.	4.0	4
36	Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Advanced Materials, 2020, 32, e1907006.	11.1	106

3

#	Article	IF	Citations
37	N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Materials, 2020, 32, 517-524.	9.5	80
38	Electromagnetic Interference Shielding: Electromagnetic Shielding of Monolayer MXene Assemblies (Adv. Mater. 9/2020). Advanced Materials, 2020, 32, 2070064.	11.1	16
39	Electromagnetic Shielding of Monolayer MXene Assemblies. Advanced Materials, 2020, 32, e1906769.	11.1	410
40	Open porous graphene nanoribbon hydrogel via additive-free interfacial self-assembly: Fast mass transport electrodes for high-performance biosensing and energy storage. Energy Storage Materials, 2019, 16, 251-258.	9.5	27
41	Effective and sustainable Cs ⁺ remediation <i>via</i> exchangeable sodium-ion sites in graphene oxide fibers. Journal of Materials Chemistry A, 2019, 7, 17754-17760.	5.2	9
42	Janus Graphene Liquid Crystalline Fiber with Tunable Properties Enabled by Ultrafast Flash Reduction. Small, 2019, 15, e1901529.	5.2	27
43	Conformal 3D Nanopatterning by Block Copolymer Lithography with Vapor-Phase Deposited Neutral Adlayer. ACS Nano, 2019, 13, 13092-13099.	7.3	15
44	Highâ€Energy Efficiency Membraneless Flowless Zn–Br Battery: Utilizing the Electrochemical–Chemical Growth of Polybromides. Advanced Materials, 2019, 31, e1904524.	11.1	76
45	Reversible Alloying of Phosphorene with Potassium and Its Stabilization Using Reduced Graphene Oxide Buffer Layers. ACS Nano, 2019, 13, 14094-14106.	7.3	36
46	Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38006-38015.	4.0	13
47	Nitrogenâ€Dopantâ€Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1902489.	7.8	18
48	Cobalt Based Nanoparticles Embedded Reduced Graphene Oxide Aerogel for Hydrogen Evolution Electrocatalyst. Particle and Particle Systems Characterization, 2019, 36, 1900090.	1.2	11
49	A perspective on R&D status of energy storage systems in South Korea. Energy Storage Materials, 2019, 23, 154-158.	9.5	9
50	Nanopatterns with a Square Symmetry from an Orthogonal Lamellar Assembly of Block Copolymers. ACS Applied Materials & District Square Symmetry from an Orthogonal Lamellar Assembly of Block Copolymers.	4.0	13
51	Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy, 2019, 61, 236-244.	8.2	34
52	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. Chemistry of Materials, 2019, 31, 2786-2794.	3.2	54
53	Spontaneous Nanobelt Formation by Selfâ€Assembly of βâ€Benzyl GABA. Chemistry - an Asian Journal, 2019, 14, 1945-1948.	1.7	1
54	Directed Nanoscale Self-Assembly of Natural Photosystems on Nitrogen-Doped Carbon Nanotubes for Solar-Energy Harvesting. ACS Applied Bio Materials, 2019, 2, 2109-2115.	2.3	8

#	Article	IF	CITATIONS
55	Utilizing Hidden Surfaces: End-Cap Removal of Carbon Nanotubes for Improved Lithium Storage. Journal of Physical Chemistry C, 2019, 123, 6220-6228.	1.5	4
56	Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes. Nature Nanotechnology, 2019, 14, 245-251.	15.6	84
57	Fe-N4 complex embedded free-standing carbon fabric catalysts for higher performance ORR both in alkaline & amp; acidic media. Nano Energy, 2019, 56, 524-530.	8.2	88
58	Joule heating-induced sp2-restoration in graphene fibers. Carbon, 2019, 142, 230-237.	5.4	46
59	Photoexcitation-Controllable Magnetization in Magnetic–Semiconducting Nanohybrid Containing γ-Fe ₂ O ₃ –Graphene (OD–2D) van der Waals Heterostructure Based on Steady-State Pump–Probe Light Scattering Measurement in Magnetic Field. Journal of Physical Chemistry C. 2018. 122. 6912-6917.	1.5	3
60	Laser-Directed Self-Assembly of Highly Aligned Lamellar and Cylindrical Block Copolymer Nanostructures: Experiment and Simulation. Macromolecules, 2018, 51, 1418-1426.	2.2	21
61	High Activity Hydrogen Evolution Catalysis by Uniquely Designed Amorphous/Metal Interface of Core–shell Phosphosulfide/Nâ€Doped CNTs. Advanced Energy Materials, 2018, 8, 1702806.	10.2	39
62	Perovskite Light-Emitting Diodes via Laser Crystallization: Systematic Investigation on Grain Size Effects for Device Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2490-2495.	4.0	34
63	The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction. Journal of Physical Chemistry B, 2018, 122, 543-547.	1.2	27
64	Bimodal phase separated block copolymer/homopolymer blends self-assembly for hierarchical porous metal nanomesh electrodes. Nanoscale, 2018, 10, 100-108.	2.8	17
65	Tailored Colloidal Stability and Rheological Properties of Graphene Oxide Liquid Crystals with Polymer-Induced Depletion Attractions. ACS Nano, 2018, 12, 11399-11406.	7.3	29
66	Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44660-44667.	4.0	59
67	2D Nanopatterning: 2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography (Adv. Funct.) Tj ETQq1	l 1 0.7843 7.8	814 rgBT /
68	Graphene Fibers: Musselâ€Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity (Adv. Mater. 40/2018). Advanced Materials, 2018, 30, 1870298.	11,1	4
69	Ultrastable Grapheneâ€Encapsulated 3 nm Nanoparticles by In Situ Chemical Vapor Deposition. Advanced Materials, 2018, 30, e1805023.	11.1	24
70	2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography. Advanced Functional Materials, 2018, 28, 1804508.	7.8	41
71	Enhancing the Performance of Surface Plasmon Resonance Biosensor via Modulation of Electron Density at the Graphene–Gold Interface. Advanced Materials Interfaces, 2018, 5, 1800433.	1.9	23
72	Graphene-based materials and structures for energy harvesting with fluids – A review. Materials Today, 2018, 21, 1019-1041.	8.3	81

#	Article	lF	Citations
73	Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chemical Society Reviews, 2018, 47, 6013-6045.	18.7	121
74	Musselâ€Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity. Advanced Materials, 2018, 30, e1803267.	11.1	67
75	Synergistically enhanced photocatalytic activity of graphitic carbon nitride and WO3 nanohybrids mediated by photo-Fenton reaction and H2O2. Applied Catalysis B: Environmental, 2017, 206, 263-270.	10.8	65
76	Controlled Segmentation of Metal Nanowire Array by Block Copolymer Lithography and Reversible Ion Loading. Small, 2017, 13, 1603939.	5. 2	19
77	Amorphous Molybdenum Sulfide Deposited Graphene Liquid Crystalline Fiber for Hydrogen Evolution Reaction Catalysis. Particle and Particle Systems Characterization, 2017, 34, 1600375.	1.2	31
78	Self-Assembly of Complex Multimetal Nanostructures from Perforated Lamellar Block Copolymer Thin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15727-15732.	4.0	22
79	Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents. Carbon, 2017, 119, 555-568.	5.4	70
80	Cobaltâ€Based Active Species Molecularly Immobilized on Carbon Nanotubes for the Oxygen Reduction Reaction. ChemSusChem, 2017, 10, 3473-3481.	3.6	20
81	Flash Light Millisecond Selfâ€Assembly of High χ Block Copolymers for Waferâ€Scale Subâ€10 nm Nanopatterning. Advanced Materials, 2017, 29, 1700595.	11.1	78
82	Alkylated sulfonated poly(arylene sulfone)s for proton exchange membranes. Macromolecular Research, 2017, 25, 400-407.	1.0	5
83	Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1602596.	10.2	62
84	Graphene: Microtopographyâ€Guided Conductive Patterns of Liquidâ€Driven Graphene Nanoplatelet Networks for Stretchable and Skinâ€Conformal Sensor Array (Adv. Mater. 21/2017). Advanced Materials, 2017, 29, .	11.1	0
85	Selective protein transport through ultra-thin suspended reduced graphene oxide nanopores. Nanoscale, 2017, 9, 13457-13464.	2.8	17
86	Microtopographyâ€Guided Conductive Patterns of Liquidâ€Driven Graphene Nanoplatelet Networks for Stretchable and Skinâ€Conformal Sensor Array. Advanced Materials, 2017, 29, 1606453.	11.1	101
87	Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity?. Small Methods, 2017, 1, 1600014.	4.6	179
88	Spontaneous linker-free binding of polyoxometalates on nitrogen-doped carbon nanotubes for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 1941-1947.	5 . 2	46
89	Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability. Carbon, 2017, 114, 275-283.	5.4	59
90	Ultrafast Interfacial Self-Assembly of 2D Transition Metal Dichalcogenides Monolayer Films and Their Vertical and In-Plane Heterostructures. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1021-1028.	4.0	43

#	Article	IF	Citations
91	Wide concentration liquid crystallinity of graphene oxide aqueous suspensions with interacting polymers. Materials Horizons, 2017, 4, 1157-1164.	6.4	27
92	Electric field directed self-assembly of block copolymers for rapid formation of large-area complex nanopatterns. Molecular Systems Design and Engineering, 2017, 2, 560-566.	1.7	29
93	Graphene Oxide Liquid Crystals Special Issue, Editorial. Particle and Particle Systems Characterization, 2017, 34, 1700261.	1.2	5
94	Phosphorene for energy and catalytic applicationâ€"filling the gap between graphene and 2D metal chalcogenides. 2D Materials, 2017, 4, 042006.	2.0	46
95	Supramolecular Nanotubules as a Catalytic Regulator for Palladium Cations: Applications in Selective Catalysis. Angewandte Chemie - International Edition, 2017, 56, 11511-11514.	7.2	47
96	UV-crosslinked poly(arylene ether sulfone) – LAPONITE® nanocomposites for proton exchange membranes. RSC Advances, 2017, 7, 28358-28365.	1.7	5
97	Supramolecular Nanotubules as a Catalytic Regulator for Palladium Cations: Applications in Selective Catalysis. Angewandte Chemie, 2017, 129, 11669-11672.	1.6	6
98	Single-step self-assembly of multilayer graphene based dielectric nanostructures. FlatChem, 2017, 4, 61-67.	2.8	8
99	Interface-Confined High Crystalline Growth of Semiconducting Polymers at Graphene Fibers for High-Performance Wearable Supercapacitors. ACS Nano, 2017, 11, 9424-9434.	7. 3	94
100	Omnidirectional Deformable Energy Textile for Human Joint Movement Compatible Energy Storage. ACS Applied Materials & Diterfaces, 2017, 9, 41363-41370.	4.0	16
101	Carbon nanotube-grafted inverse opal nanostructures. Optical Materials Express, 2017, 7, 2242.	1.6	2
102	Twoâ€Terminal Graphene Oxide Devices for Electrical Modulation of Broadband Terahertz Waves. Advanced Optical Materials, 2016, 4, 548-554.	3.6	2
103	Liquid Crystals: Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications (Adv. Mater.) Tj ETQq1 10	.784314 r 11.1	gBJT /Overloo
104	Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications. Advanced Materials, 2016, 28, 3045-3068.	11.1	211
105	Lowâ€Temperature Chemical Vapor Deposition Synthesis of Pt–Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis. Advanced Materials, 2016, 28, 7115-7122.	11.1	156
106	Laser Crystallization of Organic–Inorganic Hybrid Perovskite Solar Cells. ACS Nano, 2016, 10, 7907-7914.	7.3	123
107	Effective control of crystal grain size in CH ₃ NH ₃ Pbl ₃ perovskite solar cells with a pseudohalide Pb(SCN) ₂ additive. CrystEngComm, 2016, 18, 6090-6095.	1.3	87
108	Atomic layer deposition assisted sacrificial template synthesis of mesoporous TiO2 electrode for high performance lithium ion battery anodes. Energy Storage Materials, 2016, 2, 27-34.	9.5	29

#	Article	IF	Citations
109	Large-Area Buckled MoS ₂ Films on the Graphene Substrate. ACS Applied Materials & Interfaces, 2016, 8, 13512-13519.	4.0	38
110	Complex Highâ€Aspectâ€Ratio Metal Nanostructures by Secondary Sputtering Combined with Block Copolymer Selfâ€Assembly. Advanced Materials, 2016, 28, 8439-8445.	11.1	26
111	High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co ₃ O ₄ Composite Aerogel Electrodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 22253-22260.	4.0	57
112	Enhancing Organic Solar Cells with Plasmonic Nanomaterials. ChemNanoMat, 2016, 2, 19-27.	1.5	11
113	Divalent Fe Atom Coordination in Two-Dimensional Microporous Graphitic Carbon Nitride. ACS Applied Materials & Divalent Report Applied Materials & Divalent Report	4.0	70
114	Alloyed Nanoparticles: Low-Temperature Chemical Vapor Deposition Synthesis of Pt-Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis (Adv. Mater. 33/2016). Advanced Materials, 2016, 28, 7292-7292.	11.1	1
115	Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker. ACS Applied Materials & Diterfaces, 2016, 8, 22295-22300.	4.0	33
116	Fabrication of 50 nm scale Pt nanostructures by block copolymer (BCP) and its characteristics of surface-enhanced Raman scattering (SERS). RSC Advances, 2016, 6, 70756-70762.	1.7	11
117	Hierarchical Directed Selfâ€Assembly of Diblock Copolymers for Modified Pattern Symmetry. Advanced Functional Materials, 2016, 26, 6462-6470.	7.8	16
118	Hierarchical spatial heterogeneity in liquid crystals composed of graphene oxides. Physical Chemistry Chemical Physics, 2016, 18, 22399-22406.	1.3	16
119	Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nature Communications, 2016, 7, 12911.	5.8	143
120	Atomic thin titania nanosheet-coupled reduced graphene oxide 2D heterostructures for enhanced photocatalytic activity and fast lithium storage. Electronic Materials Letters, 2016, 12, 211-218.	1.0	13
121	3D Tailored Crumpling of Blockâ€Copolymer Lithography on Chemically Modified Graphene. Advanced Materials, 2016, 28, 1591-1596.	11.1	58
122	Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nature Communications, 2016, 7, 10364.	5.8	109
123	Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1571-1577.	4.0	67
124	Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. ACS Nano, 2016, 10, 3435-3442.	7.3	102
125	One-Dimensional RuO ₂ /Mn ₂ O ₃ Hollow Architectures as Efficient Bifunctional Catalysts for Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 2076-2083.	4.5	193
126	Resilient High Catalytic Performance of Platinum Nanocatalysts with Porous Graphene Envelope. ACS Nano, 2015, 9, 5947-5957.	7.3	55

#	Article	IF	Citations
127	Directed self-assembly of cylinder-forming diblock copolymers on sparse chemical patterns. Soft Matter, 2015, 11, 4496-4506.	1.2	15
128	High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy, 2015, 12, 331-338.	8.2	146
129	Atomic Layer Deposition Encapsulated Activated Carbon Electrodes for High Voltage Stable Supercapacitors. ACS Applied Materials & Supercapacitors. ACS Applied M	4.0	30
130	Anomalous Rapid Defect Annihilation in Self-Assembled Nanopatterns by Defect Melting. Nano Letters, 2015, 15, 1190-1196.	4.5	37
131	Systematic Study on the Sensitivity Enhancement in Graphene Plasmonic Sensors Based on Layer-by-Layer Self-Assembled Graphene Oxide Multilayers and Their Reduced Analogues. ACS Applied Materials & Diterfaces, 2015, 7, 144-151.	4.0	60
132	Direct Observation of a Carbon Filament in Water-Resistant Organic Memory. ACS Nano, 2015, 9, 7306-7313.	7.3	85
133	Au–Ag Core–Shell Nanoparticle Array by Block Copolymer Lithography for Synergistic Broadband Plasmonic Properties. ACS Nano, 2015, 9, 5536-5543.	7.3	130
134	Self-Size-Limiting Nanoscale Perforation of Graphene for Dense Heteroatom Doping. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25898-25905.	4.0	24
135	Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2015, 2, 20.	6.3	128
136	Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride. ACS Nano, 2015, 9, 9148-9157.	7.3	88
137	Chemically modified graphene based supercapacitors for flexible and miniature devices. Electronic Materials Letters, 2015, 11, 719-734.	1.0	47
138	Surface Modification of Block Copolymer Through Sulfur Containing Plasma Treatment. Journal of Nanoscience and Nanotechnology, 2015, 15, 8093-8098.	0.9	1
139	Synergistic Concurrent Enhancement of Charge Generation, Dissociation, and Transport in Organic Solar Cells with Plasmonic Metal–Carbon Nanotube Hybrids. Advanced Materials, 2015, 27, 1519-1525.	11.1	85
140	Liquid crystallinity driven highly aligned large graphene oxide composites. Journal of Solid State Chemistry, 2015, 224, 115-119.	1.4	17
141	Spin Cast PDMS Film Supported Versatile and Transferrable Block Copolymer Lithography. Science of Advanced Materials, 2015, 7, 886-890.	0.1	1
142	Device-oriented graphene nanopatterning by mussel-inspired directed block copolymer self-assembly. Nanotechnology, 2014, 25, 014008.	1.3	29
143	Nanowire random networks. Materials Today, 2014, 17, 412-413.	8.3	2
144	Direct Growth of Polyaniline Chains from Nitrogen Site of N-Doped Carbon Nanotubes for High Performance Supercapacitor. Advances in Science and Technology, 2014, 93, 164-167.	0.2	1

#	Article	IF	Citations
145	Atomic Layer Deposition Assisted Pattern Multiplication of Block Copolymer Lithography for 5 nm Scale Nanopatterning. Advanced Functional Materials, 2014, 24, 4343-4348.	7.8	55
146	Amineâ€Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells. Advanced Materials, 2014, 26, 494-500.	11.1	159
147	Negativeâ€Tone Block Copolymer Lithography by In Situ Surface Chemical Modification. Small, 2014, 10, 4207-4212.	5.2	6
148	Graphene oxide-assisted production of carbon nitrides using a solution process and their photocatalytic activity. Carbon, 2014, 66, 119-125.	5.4	49
149	Electric fields line up graphene oxide. Nature Materials, 2014, 13, 325-326.	13.3	66
150	Threeâ€Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors. Advanced Materials, 2014, 26, 615-619.	11.1	396
151	25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Traphene for Optimized Nanostructures & Transcription (Nanostructures & Nanodevices. Advanced Materials, 2014, 26, 40-67.	11.1	479
152	Subwavelength imaging in the visible range using a metal coated carbon nanotube forest. Nanoscale, 2014, 6, 5967-5970.	2.8	4
153	Complementary p- and n-Type Polymer Doping for Ambient Stable Graphene Inverter. ACS Nano, 2014, 8, 650-656.	7.3	42
154	N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries. Energy and Environmental Science, 2014, 7, 621-626.	15.6	137
155	Carbon: 25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices (Adv. Mater. 1/2014). Advanced Materials, 2014, 26, 2-2.	11.1	7
156	Nanodomain Swelling Block Copolymer Lithography for Morphology Tunable Metal Nanopatterning. Small, 2014, 10, 3742-3749.	5.2	18
157	Electroless Bimetal Decoration on Nâ€Doped Carbon Nanotubes and Graphene for Oxygen Reduction Reaction Catalysts. Particle and Particle Systems Characterization, 2014, 31, 965-970.	1.2	21
158	Randomâ€Graft Polymerâ€Directed Synthesis of Inorganic Mesostructures with Ultrathin Frameworks. Angewandte Chemie - International Edition, 2014, 53, 5117-5121.	7.2	36
159	Semiconducting Polymers with Nanocrystallites Interconnected via Boron-Doped Carbon Nanotubes. Nano Letters, 2014, 14, 7100-7106.	4.5	17
160	Production of novel FeOOH/reduced graphene oxide hybrids and their performance as oxygen reduction reaction catalysts. Carbon, 2014, 80, 127-134.	5.4	42
161	Rheological properties of graphene oxide liquid crystal. Carbon, 2014, 80, 453-461.	5.4	124
162	Liquid Crystal Size Selection of Large-Size Graphene Oxide for Size-Dependent N-Doping and Oxygen Reduction Catalysis. ACS Nano, 2014, 8, 9073-9080.	7.3	116

#	Article	IF	CITATIONS
163	High Performance Organic Photovoltaics with Plasmonic-Coupled Metal Nanoparticle Clusters. ACS Nano, 2014, 8, 10305-10312.	7.3	85
164	Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nature Communications, 2014, 5, 4840.	5.8	138
165	Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chemical Communications, 2014, 50, 6818.	2.2	428
166	Wrinkleâ€Directed Selfâ€Assembly of Block Copolymers for Aligning of Nanowire Arrays. Advanced Materials, 2014, 26, 4665-4670.	11,1	38
167	Electrical Biomolecule Detection Using Nanopatterned SiliconÂvia Block Copolymer Lithography. Small, 2014, 10, 337-343.	5.2	48
168	Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393.	4.5	92
169	Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction. Nano Letters, 2014, 14, 1228-1233.	4.5	634
170	Directed self-assembly of block copolymers for next generation nanolithography. Materials Today, 2013, 16, 468-476.	8.3	260
171	Multicomponent Nanopatterns by Directed Block Copolymer Self-Assembly. ACS Nano, 2013, 7, 8899-8907.	7.3	99
172	Monodisperse Pattern Nanoalloying for Synergistic Intermetallic Catalysis. Nano Letters, 2013, 13, 5720-5726.	4.5	58
173	Work function engineering of ZnO electrodes by using p-type and n-type doped carbon nanotubes. Nanotechnology, 2013, 24, 484013.	1.3	12
174	Flexible and Transferrable Selfâ€Assembled Nanopatterning on Chemically Modified Graphene. Advanced Materials, 2013, 25, 1331-1335.	11.1	88
175	Directed self-assembly of block copolymers for universal nanopatterning. Soft Matter, 2013, 9, 2780.	1.2	62
176	Exciton Dissociation and Chargeâ€Transport Enhancement in Organic Solar Cells with Quantumâ€Dot/Nâ€doped CNT Hybrid Nanomaterials. Advanced Materials, 2013, 25, 2011-2017.	11.1	103
177	Direct Growth of Polyaniline Chains from Nâ€Doped Sites of Carbon Nanotubes. Small, 2013, 9, 3829-3833.	5.2	49
178	The Role of N-Doped Multiwall Carbon Nanotubes in Achieving Highly Efficient Polymer Bulk Heterojunction Solar Cells. Nano Letters, 2013, 13, 2365-2369.	4.5	191
179	Solar Cells: Exciton Dissociation and Chargeâ€Transport Enhancement in Organic Solar Cells with Quantumâ€Dot/Nâ€doped CNT Hybrid Nanomaterials (Adv. Mater. 14/2013). Advanced Materials, 2013, 25, 2104-2104.	11.1	3
180	Large-area, highly oriented lamellar block copolymer nanopatterning directed by graphoepitaxially assembled cylinder nanopatterns. Journal of Materials Chemistry, 2012, 22, 6307.	6.7	25

#	Article	IF	CITATIONS
181	Large-area, scalable fabrication of conical TiN/GST/TiN nanoarray for low-power phase change memory. Journal of Materials Chemistry, 2012, 22, 1347-1351.	6.7	9
182	Biomineralized N-Doped CNT/TiO ₂ Core/Shell Nanowires for Visible Light Photocatalysis. ACS Nano, 2012, 6, 935-943.	7.3	186
183	Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nature Communications, 2012, 3, 638.	5.8	354
184	Carbon nanotube-based membranes: Fabrication and application to desalination. Journal of Industrial and Engineering Chemistry, 2012, 18, 1551-1559.	2.9	165
185	Workfunction-Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes. ACS Nano, 2012, 6, 159-167.	7.3	297
186	Flexible Multilevel Resistive Memory with Controlled Charge Trap B- and N-Doped Carbon Nanotubes. Nano Letters, 2012, 12, 2217-2221.	4.5	177
187	Fabrication of high-density In3Sb1Te2phase change nanoarray on glass-fabric reinforced flexible substrate. Nanotechnology, 2012, 23, 255301.	1.3	8
188	Graphoepitaxy of Blockâ€Copolymer Selfâ€Assembly Integrated with Singleâ€Step ZnO Nanoimprinting. Small, 2012, 8, 1563-1569.	5.2	36
189	Nanopatterning: Graphoepitaxy of Blockâ€Copolymer Selfâ€Assembly Integrated with Singleâ€Step ZnO Nanoimprinting (Small 10/2012). Small, 2012, 8, 1458-1458.	5.2	1
190	Flexible Nanocomposite Generator Made of BaTiO ₃ Nanoparticles and Graphitic Carbons. Advanced Materials, 2012, 24, 2999-3004.	11,1	601
191	A ZnO/N-doped carbon nanotube nanocomposite charge transport layer for high performance optoelectronics. Journal of Materials Chemistry, 2012, 22, 12695.	6.7	86
192	DNA Origami Nanopatterning on Chemically Modified Graphene. Angewandte Chemie - International Edition, 2012, 51, 912-915.	7.2	59
193	Back Cover: DNA Origami Nanopatterning on Chemically Modified Graphene (Angew. Chem. Int. Ed.) Tj $$ ETQq $$ 1 $$ 1 $$	0.784314 7.2	rgBT Overlo
194	Selective carrier transport enhancement in bulk-heterojunction organic photovoltaics with nitrogen or boron doped carbon nanotubes. , $2011, \ldots$		0
195	Ultralarge-area block copolymer lithography via soft graphoepitaxy. Journal of Materials Chemistry, 2011, 21, 5856.	6.7	32
196	Simple ZnO Nanowires Patterned Growth by Microcontact Printing for High Performance Field Emission Device. Journal of Physical Chemistry C, 2011, 115, 11435-11441.	1.5	91
197	Biomimetic mineralization of vertical N-doped carbon nanotubes. Chemical Communications, 2011, 47, 535-537.	2.2	31
198	Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices. Journal of Materials Chemistry, 2011, 21, 2051.	6.7	93

#	Article	IF	CITATIONS
199	Transferred vertically aligned N-doped carbon nanotube arrays: use in dye-sensitized solar cells as counter electrodes. Chemical Communications, 2011, 47, 4264.	2.2	175
200	Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. Journal of Materials Chemistry, 2011, 21, 3432-3437.	6.7	227
201	Theory, Synthesis, and Oxygen Reduction Catalysis of Fe-Porphyrin-Like Carbon Nanotube. Physical Review Letters, 2011, 106, 175502.	2.9	317
202	Analysis on switching mechanism of graphene oxide resistive memory device. Journal of Applied Physics, 2011, 110, .	1.1	103
203	Visible-light active nanohybrid TiO2/carbon photocatalysts with programmed morphology by direct carbonization of block copolymer templates. Green Chemistry, 2011, 13, 3397.	4.6	44
204	Flexible Field Emission of Nitrogenâ€Doped Carbon Nanotubes/Reduced Graphene Hybrid Films. Small, 2011, 7, 95-100.	5.2	116
205	Novel Fabrication of 2D and 3D Inverted Opals and their Application. Small, 2011, 7, 2581-2586.	5.2	13
206	Sub-Nanometer Level Size Tuning of a Monodisperse Nanoparticle Array Via Block Copolymer Lithography. Advanced Functional Materials, 2011, 21, 250-254.	7.8	70
207	Tailored Assembly of Carbon Nanotubes and Graphene. Advanced Functional Materials, 2011, 21, 1338-1354.	7.8	207
208	Electric Actuation of Nanostructured Thermoplastic Elastomer Gels with Ultralarge Electrostriction Coefficients. Advanced Functional Materials, 2011, 21, 3242-3249.	7.8	55
209	Tailored Assembly of Carbon Nanostructures: Tailored Assembly of Carbon Nanotubes and Graphene (Adv. Funct. Mater. 8/2011). Advanced Functional Materials, 2011, 21, 1329-1329.	7.8	2
210	Selective Electron―or Holeâ€Transport Enhancement in Bulkâ€Heterojunction Organic Solar Cells with N― or Bâ€Doped Carbon Nanotubes. Advanced Materials, 2011, 23, 629-633.	11.1	248
211	Combination of Titanium Oxide and a Conjugated Polyelectrolyte for Highâ€Performance Inverted‶ype Organic Optoelectronic Devices. Advanced Materials, 2011, 23, 2759-2763.	11.1	242
212	Musselâ€Inspired Block Copolymer Lithography for Low Surface Energy Materials of Teflon, Graphene, and Gold. Advanced Materials, 2011, 23, 5618-5622.	11.1	188
213	Surface Nanopatterning: Mussel-Inspired Block Copolymer Lithography for Low Surface Energy Materials of Teflon, Graphene, and Gold (Adv. Mater. 47/2011). Advanced Materials, 2011, 23, 5584-5584.	11.1	2
214	Graphene Oxide Liquid Crystals. Angewandte Chemie - International Edition, 2011, 50, 3043-3047.	7.2	534
215	Improved Oxygen Diffusion Barrier Properties of Ruthenium-Titanium Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition. Journal of Nanoscience and Nanotechnology, 2011, 11, 671-674.	0.9	11
216	Ultralarge-area block copolymer lithography using self-assembly assisted photoresist pre-pattern. , 2011, , .		0

#	Article	IF	CITATIONS
217	High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers. Applied Physics Letters, 2011, 99, 163305.	1.5	38
218	Hybrid organic-inorganic light-emitting electrochemical cells using fluorescent polymer and ionic liquid blend as an active layer. Applied Physics Letters, 2011, 98, 253309.	1.5	18
219	Capillarity Induced Large Area Patterning of Peptide Nanowires. Journal of Nanoscience and Nanotechnology, 2010, 10, 6954-6957.	0.9	5
220	Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Applied Physics Letters, 2010, 96, .	1.5	255
221	Flexible Resistive Switching Memory Device Based on Graphene Oxide. IEEE Electron Device Letters, 2010, 31, 1005-1007.	2.2	145
222	Role of Water in Directing Diphenylalanine Assembly into Nanotubes and Nanowires. Advanced Materials, 2010, 22, 583-587.	11.1	187
223	Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films. Advanced Materials, 2010, 22, 1247-1252.	11.1	307
224	Peptide/Graphene Hybrid Assembly into Core/Shell Nanowires. Advanced Materials, 2010, 22, 2060-2064.	11.1	248
225	Palladium Nanoparticle Catalyzed Conversion of Iron Nanoparticles into Diameter―and Lengthâ€Controlled Fe ₂ P Nanorods. Angewandte Chemie - International Edition, 2010, 49, 5712-5716.	7.2	14
226	Threeâ€Dimensional Selfâ€Assembly of Graphene Oxide Platelets into Mechanically Flexible Macroporous Carbon Films. Angewandte Chemie - International Edition, 2010, 49, 10084-10088.	7.2	404
227	Polymer Brushes via Controlled, Surfaceâ€Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. Macromolecular Rapid Communications, 2010, 31, 281-288.	2.0	350
228	Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures. Colloids and Surfaces B: Biointerfaces, 2010, 79, 440-445.	2.5	33
229	Bionanosphere Lithography via Hierarchical Peptide Selfâ€Assembly of Aromatic Triphenylalanine. Small, 2010, 6, 945-951.	5.2	63
230	Non-volatile memory using graphene oxide for flexible electronics., 2010,,.		4
231	Soft materials nanoengineering by directed molecular assembly. , 2010, , .		0
232	Peptide-templating dye-sensitized solar cells. Nanotechnology, 2010, 21, 185601.	1.3	36
233	Facile Fabrication and Field Emission of Metal-Particle-Decorated Vertical N-Doped Carbon Nanotube/Graphene Hybrid Films. Journal of Physical Chemistry C, 2010, 114, 21184-21189.	1.5	64
234	Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, 2010, 20, 1907.	6.7	553

#	Article	IF	CITATIONS
235	A plasmonic biosensor array by block copolymer lithography. Journal of Materials Chemistry, 2010, 20, 7241.	6.7	96
236	Ultralarge-Area Block Copolymer Lithography Enabled by Disposable Photoresist Prepatterning. ACS Nano, 2010, 4, 5181-5186.	7.3	97
237	Growth Kinetics of Wall-Number Controlled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2010, 114, 3454-3458.	1.5	20
238	Surface Energy Modification by Spin-Cast, Large-Area Graphene Film for Block Copolymer Lithography. ACS Nano, 2010, 4, 5464-5470.	7.3	132
239	Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications. Nano Letters, 2010, 10, 4381-4386.	4.5	554
240	Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides. Applied Physics Letters, 2010, 96, 243306.	1.5	83
241	One-Dimensional Metal Nanowire Assembly via Block Copolymer Soft Graphoepitaxy. Nano Letters, 2010, 10, 3500-3505.	4.5	102
242	Protein nanoarrays on a highly-oriented lamellar surface. Chemical Communications, 2010, 46, 1911-1913.	2.2	22
243	Block copolymer multiple patterning integrated with conventional ArFlithography. Soft Matter, 2010, 6, 120-125.	1.2	64
244	Spin coating nanopatterned multielemental materials via self-assembled nanotemplates. Nanotechnology, 2009, 20, 225301.	1.3	12
245	Spontaneous Lamellar Alignment in Thicknessâ€Modulated Block Copolymer Films. Advanced Functional Materials, 2009, 19, 2584-2591.	7.8	63
246	Sizeâ€Dependent Isotropic/Nematic Phase Transition Behavior of Liquid Crystalline Peptide Nanowires. Macromolecular Chemistry and Physics, 2009, 210, 1283-1290.	1.1	13
247	Water-repellent macroporous carbon nanotube/elastomer nanocomposites by self-organized aqueous droplets. Macromolecular Research, 2009, 17, 666-671.	1.0	18
248	Geometric effects of nanocrystals in nonvolatile memory using block copolymer nanotemplate. Solid-State Electronics, 2009, 53, 640-643.	0.8	3
249	One-Dimensional Nanoassembly of Block Copolymers Tailored by Chemically Patterned Surfaces. Macromolecules, 2009, 42, 1189-1193.	2.2	43
250	Vertical Single-Walled Carbon Nanotube Arrays via Block Copolymer Lithography. Chemistry of Materials, 2009, 21, 1368-1374.	3.2	33
251	Highly Efficient Vertical Growth of Wall-Number-Selected, N-Doped Carbon Nanotube Arrays. Nano Letters, 2009, 9, 1427-1432.	4.5	137
252	Fabrication and Electrochemical Characterization of TiO ₂ Three-Dimensional Nanonetwork Based on Peptide Assembly. ACS Nano, 2009, 3, 1085-1090.	7.3	195

#	Article	IF	CITATIONS
253	Soft Graphoepitaxy of Block Copolymer Assembly with Disposable Photoresist Confinement. Nano Letters, 2009, 9, 2300-2305.	4.5	144
254	Localized surface plasmon resonance coupling in Au nanoparticles/phosphorus dendrimer multilayer thin films fabricated by layer-by-layer self-assembly method. Journal of Materials Chemistry, 2009, 19, 2006.	6.7	40
255	Highly entangled hollow TiO2 nanoribbons templating diphenylalanine assembly. Journal of Materials Chemistry, 2009, 19, 3512.	6.7	50
256	Highly entangled carbon nanotube scaffolds by self-organized aqueous droplets. Soft Matter, 2009, 5, 2343-2346.	1.2	70
257	Self-organized grafting of carbon nanotubes by end-functionalized polymers. Macromolecular Research, 2008, 16, 261-266.	1.0	30
258	Polymer/carbon nanotube nanocomposites via noncovalent grafting with endâ€functionalized polymers. Journal of Applied Polymer Science, 2008, 110, 2345-2351.	1.3	20
259	Fabrication of Luminescent Nanoarchitectures by Electron Irradiation of Polystyrene. Advanced Materials, 2008, 20, 2094-2098.	11.1	38
260	Hierarchical Selfâ€Assembly of Block Copolymers for Lithographyâ€Free Nanopatterning. Advanced Materials, 2008, 20, 2303-2307.	11.1	76
261	Hierarchically Organized Carbon Nanotube Arrays from Selfâ€Assembled Block Copolymer Nanotemplates. Advanced Materials, 2008, 20, 2480-2485.	11.1	81
262	Universal Block Copolymer Lithography for Metals, Semiconductors, Ceramics, and Polymers. Advanced Materials, 2008, 20, 1898-1904.	11.1	138
263	Morphology Control of One-Dimensional Peptide Nanostructures. Journal of Nanoscience and Nanotechnology, 2008, 8, 5547-5550.	0.9	20
264	Well-Ordered Nanostructure SiC Ceramic Derived from Self-Assembly of Polycarbosilane-Block-Poly(methyl methacrylate) Diblock Copolymer. Journal of Nanoscience and Nanotechnology, 2008, 8, 5527-5531.	0.9	8
265	Fabrication of Vertical Carbon Nanotube Arrays from Self-Assembled Block Copolymer Films. Journal of Nanoscience and Nanotechnology, 2008, 8, 5571-5575.	0.9	8
266	Self-Assembled Nanostructures of Block Copolymers on Random Copolymer Brush. Solid State Phenomena, 2007, 124-126, 579-582.	0.3	3
267	The Synthesis of Random Brush for Nanostructure of Block Copolymer. Macromolecular Symposia, 2007, 249-250, 303-306.	0.4	2
268	Fabrication of Ordered Porous SWNT-Polymer Nanocomposites by Emulsion Templating. Macromolecular Symposia, 2007, 249-250, 618-622.	0.4	5
269	Hierarchically Ordered Polymer Films by Templated Organization of Aqueous Droplets. Advanced Functional Materials, 2007, 17, 2315-2320.	7.8	72
270	Liquid Crystalline Peptide Nanowires. Advanced Materials, 2007, 19, 3924-3927.	11.1	99

#	Article	IF	Citations
271	Novel Complex Nanostructure from Directed Assembly of Block Copolymers on Incommensurate Surface Patterns. Advanced Materials, 2007, 19, 3271-3275.	11.1	65
272	Macroporous Polymer Thin Film Prepared from Temporarily Stabilized Water-in-Oil Emulsion. Journal of Physical Chemistry B, 2006, 110, 13959-13964.	1.2	35
273	Defect Structure in Thin Films of a Lamellar Block Copolymer Self-Assembled on Neutral Homogeneous and Chemically Nanopatterned Surfaces. Macromolecules, 2006, 39, 5466-5470.	2.2	66
274	Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures. Science, 2005, 308, 1442-1446.	6.0	912
275	Chemical modification of carbon nanotubes and preparation of polystyrene/carbon nanotubes composites. Macromolecular Research, 2004, 12, 384-390.	1.0	43
276	Mechanical and rheological properties of the maleated polypropylene-layered silicate nanocomposites with different morphology. Journal of Applied Polymer Science, 2003, 88, 1526-1535.	1.3	95
277	Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 2003, 424, 411-414.	13.7	1,594
278	Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling. Polymer, 2003, 44, 681-689.	1.8	95
279	Study on Morphology Evolution, Orientational Behavior, and Anisotropic Phase Formation of Highly Filled Polymer-Layered Silicate Nanocomposites. Macromolecules, 2003, 36, 2748-2757.	2.2	121
280	Elastic properties of hexagonal columnar mesophase self-organized from amphiphilic supramolecular columns. Applied Physics Letters, 2002, 80, 395-397.	1.5	25
281	Morphology Evolution and Anisotropic Phase Formation of the Maleated Polyethylene-Layered Silicate Nanocomposites. Macromolecules, 2002, 35, 5116-5122.	2.2	102
282	Surface Order in Thin Films of Self-Assembled Columnar Liquid Crystals. Macromolecules, 2002, 35, 3717-3721.	2.2	51
283	Synthesis of Exfoliated PMMA/Na-MMT Nanocomposites via Soap-Free Emulsion Polymerization. Macromolecules, 2001, 34, 8978-8985.	2.2	194
284	Phase Behavior, Crystallization Kinetics, and Morphology of Monotropic Liquid Crystalline Poly(esterâ^imide)s with a Decamethylene Spacer. Macromolecules, 2001, 34, 8961-8967.	2.2	20
285	Microstructural lattice simulation and transient rheological behavior of a flow-aligning liquid crystalline polymer under low shear rates. Korean Journal of Chemical Engineering, 2001, 18, 46-53.	1.2	16
286	Study on Phase Transition and Crystallization Behavior of a Monotropic Liquid Crystalline Poly(esterâ^imide). Macromolecules, 2000, 33, 7549-7556.	2.2	4
287	Rheological investigation on the anisotropic phase of cellulose–MMNO/H2O solution system. Polymer, 1999, 40, 6443-6450.	1.8	32
288	Synthesis and Characterization of Thermotropic Liquid Crystalline Poly(ester-imide)s. Polymers for Advanced Technologies, 1997, 8, 305-318.	1.6	12

#	Article	IF	CITATIONS
289	Crystallization kinetics of thermotropic liquid crystalline poly(ester-imide)s. European Polymer Journal, 1997, 33, 1613-1626.	2.6	6
290	Self-Assembly Nanofabrication via Mussel-Inspired Interfacial Engineering. Applied Mechanics and Materials, 0, 229-231, 2749-2752.	0.2	0