Cristina Sáez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790547/publications.pdf

Version: 2024-02-01

262 papers 11,162 citations

28274 55 h-index 49909 87 g-index

263 all docs

263 docs citations

263 times ranked 5884 citing authors

#	Article	IF	CITATIONS
1	Adapting the low-cost pre-disinfection column PREDICO for simultaneous softening and disinfection of pore water. Chemosphere, 2022, 287, 132334.	8.2	1
2	Exploring the pressurized heterogeneous electro-Fenton process and modelling the system. Chemical Engineering Journal, 2022, 431, 133280.	12.7	8
3	Toward real applicability of electro-ozonizers: Paying attention to the gas phase using actual commercial PEM electrolyzers technology. Chemosphere, 2022, 289, 133141.	8.2	8
4	Scale-up in PEM electro-ozonizers for the degradation of organics. Separation and Purification Technology, 2022, 284, 120261.	7.9	8
5	Disinfection of polymicrobial urines by electrochemical oxidation: Removal of antibiotic-resistant bacteria and genes. Journal of Hazardous Materials, 2022, 426, 128028.	12.4	20
6	Scale-up of Ru-based mesh anodes for the degradation of synthetic hospital wastewater. Separation and Purification Technology, 2022, 285, 120260.	7.9	3
7	High levofloxacin removal in the treatment of synthetic human urine using Ti/MMO/ZnO photo-electrocatalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107317.	6.7	9
8	Electrochemical Production of Hydrogen Peroxide in Perchloric Acid Supporting Electrolytes for the Synthesis of Chlorine Dioxide. Industrial & Engineering Chemistry Research, 2022, 61, 3263-3271.	3.7	8
9	Full and Sustainable Electrochemical Production of Chlorine Dioxide. Catalysts, 2022, 12, 315.	3. 5	4
10	Towards the production of chlorine dioxide from electrochemically ⟨scp⟩⟨i⟩inâ€situ⟨ i⟩⟨ scp⟩ produced solutions of chlorate. Journal of Chemical Technology and Biotechnology, 2022, 97, 2024-2031.	3.2	6
11	Electrochemical removal of pharmaceutical micropollutants from groundwater. Journal of Electroanalytical Chemistry, 2022, 910, 116173.	3.8	2
12	The integration of ZVI-dehalogenation and electrochemical oxidation for the treatment of complex effluents polluted with iodinated compounds. Journal of Environmental Chemical Engineering, 2022, 10, 107587.	6.7	4
13	On the way to raising the technology readiness level of diamond electrolysis. Current Opinion in Electrochemistry, 2022, 33, 100928.	4.8	1
14	Enhancing soil vapor extraction with EKSF for the removal of HCHs. Chemosphere, 2022, 296, 134052.	8.2	9
15	Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media. Catalysts, 2022, 12, 602.	3.5	4
16	Influence of pressure and cell design on the production of ozone and organic degradation. Separation and Purification Technology, 2022, 297, 121529.	7.9	7
17	Enhancement of UV disinfection of urine matrixes by electrochemical oxidation. Journal of Hazardous Materials, 2021, 410, 124548.	12.4	23
18	Improving the degradation of low concentration of microcystin-LR with PEM electrolyzers and photo-electrolyzers. Separation and Purification Technology, 2021, 259, 118189.	7.9	8

#	Article	IF	Citations
19	Photocatalytic performance of Ti/MMO/ZnO at degradation of levofloxacin: Effect of pH and chloride anions. Journal of Electroanalytical Chemistry, 2021, 880, 114894.	3.8	20
20	Promoting the formation of Co (III) electrocatalyst with diamond anodes. Journal of Electroanalytical Chemistry, 2021, 882, 115007.	3.8	6
21	Electrochemically Assisted Soil Washing for the Remediation of Non-polar and Volatile Pollutants. Current Pollution Reports, 2021, 7, 180-193.	6.6	3
22	Understanding ozone generation in electrochemical cells at mild pHs. Electrochimica Acta, 2021, 376, 138033.	5.2	27
23	The role of chloramines on the electrodisinfection of Klebsiella pneumoniae in hospital urines. Chemical Engineering Journal, 2021, 409, 128253.	12.7	23
24	Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates. Chemosphere, 2021, 271, 129451.	8.2	13
25	Novel Ti/RuO2IrO2 anode to reduce the dangerousness of antibiotic polluted urines by Fenton-based processes. Chemosphere, 2021, 270, 129344.	8.2	24
26	A review on the electrochemical production of chlorine dioxide from chlorates and hydrogen peroxide. Current Opinion in Electrochemistry, 2021, 27, 100685.	4.8	18
27	Disinfection of urines using an electro-ozonizer. Electrochimica Acta, 2021, 382, 138343.	5.2	12
28	New insights about the electrochemical production of ozone. Current Opinion in Electrochemistry, 2021, 27, 100697.	4.8	28
29	Electrochemically-based hybrid oxidative technologies for the treatment of micropollutants in drinking water. Chemical Engineering Journal, 2021, 414, 128531.	12.7	19
30	Electrochemical generation of ozone using a PEM electrolyzer at acidic pHs. Separation and Purification Technology, 2021, 267, 118672.	7.9	21
31	Continuous electro-scrubbers for the removal of perchloroethylene: Keys for selection. Journal of Electroanalytical Chemistry, 2021, 892, 115267.	3.8	3
32	Electroscrubbers for removing volatile organic compounds and odorous substances from polluted gaseous streams. Current Opinion in Electrochemistry, 2021, 28, 100718.	4.8	4
33	Towards a more realistic heterogeneous electro-Fenton. Journal of Electroanalytical Chemistry, 2021, 895, 115475.	3.8	14
34	Treatment of toluene gaseous streams using packed column electro-scrubbers and cobalt mediators. Journal of Electroanalytical Chemistry, 2021, 895, 115500.	3.8	5
35	Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis. Chemical Engineering Journal, 2021, 420, 129999.	12.7	19
36	Scale-up of electrokinetic permeable reactive barriers for the removal of organochlorine herbicide from spiked soils. Journal of Hazardous Materials, 2021, 417, 126078.	12.4	15

#	Article	lF	CITATIONS
37	Cobalt mediated electro-scrubbers for the degradation of gaseous perchloroethylene. Chemosphere, 2021, 279, 130525.	8.2	4
38	Electrochemical systems equipped with 2D and 3D microwave-made anodes for the highly efficient degradation of antibiotics in urine. Electrochimica Acta, 2021, 392, 139012.	5.2	20
39	Comparison of the performance of packed column and jet electro-scrubbers for the removal of toluene. Journal of Environmental Chemical Engineering, 2021, 9, 106114.	6.7	6
40	A review on disinfection technologies for controlling the antibiotic resistance spread. Science of the Total Environment, 2021, 797, 149150.	8.0	37
41	Is ozone production able to explain the good performance of CabECO® technology in wastewater treatment?. Electrochimica Acta, 2021, 396, 139262.	5.2	6
42	Photoelectrocatalytic treatment of levofloxacin using Ti/MMO/ZnO electrode. Chemosphere, 2021, 284, 131303.	8.2	10
43	Pressurized electro-Fenton for the reduction of the environmental impact of antibiotics. Separation and Purification Technology, 2021, 276, 119398.	7.9	27
44	Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules, 2021, 26, 6813.	3.8	13
45	Production of Chlorine Dioxide Using Hydrogen Peroxide and Chlorates. Catalysts, 2021, 11, 1478.	3.5	8
46	A comparison between flow-through cathode and mixed tank cells for the electro-Fenton process with conductive diamond anode. Chemosphere, 2020, 238, 124854.	8.2	19
47	Testing different strategies for the remediation of soils polluted with lindane. Chemical Engineering Journal, 2020, 381, 122674.	12.7	25
48	Improving photolytic treatments with electrochemical technology. Separation and Purification Technology, 2020, 235, 116229.	7.9	9
49	Innovative photoelectrochemical cell for the removal of CHCs from soil washing wastes. Separation and Purification Technology, 2020, 230, 115876.	7.9	13
50	Assessing the performance of electrochemical oxidation using DSA® and BDD anodes in the presence of UVC light. Chemosphere, 2020, 238, 124575.	8.2	39
51	Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes. Journal of Electroanalytical Chemistry, 2020, 857, 113756.	3.8	46
52	Photoelectrolysis of clopyralid wastes with a novel laser-prepared MMO-RuO2TiO2 anode. Chemosphere, 2020, 244, 125455.	8.2	27
53	Treatment of mining wastewater polluted with cyanide by coagulation processes: A mechanistic study. Separation and Purification Technology, 2020, 237, 116345.	7.9	46
54	Jet electro-absorbers for the treatment of gaseous perchloroethylene wastes. Chemical Engineering Journal, 2020, 395, 125096.	12.7	13

#	Article	IF	CITATIONS
55	Removal of antibiotic resistant bacteria by electrolysis with diamond anodes: A pretreatment or a tertiary treatment?. Journal of Water Process Engineering, 2020, 38, 101557.	5.6	18
56	New electrochemical processes for the environmental sustainability. Chemosphere, 2020, 257, 127188.	8.2	1
57	Electro-disinfection with BDD-electrodes featuring PEM technology. Separation and Purification Technology, 2020, 248, 117081.	7.9	28
58	How to avoid the formation of hazardous chlorates and perchlorates during electro-disinfection with diamond anodes?. Journal of Environmental Management, 2020, 265, 110566.	7.8	11
59	Biodegradability improvement of clopyralid wastes through electrolysis using different diamond anodes. Environmental Research, 2020, 188, 109747.	7.5	8
60	Testing the role of electrode materials on the electro-Fenton and photoelectro-Fenton degradation of clopyralid. Journal of Electroanalytical Chemistry, 2020, 871, 114291.	3.8	23
61	Testing and scaling-up of a novel Ti/Ru0.7Ti0.3O2 mesh anode in a microfluidic flow-through reactor. Chemical Engineering Journal, 2020, 398, 125568.	12.7	21
62	On the Degradation of $17-\hat{l}^2$ Estradiol Using Boron Doped Diamond Electrodes. Processes, 2020, 8, 710.	2.8	9
63	Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material. Journal of Electroanalytical Chemistry, 2020, 864, 114084.	3.8	15
64	Electro-Absorbers: A Comparison on Their Performance with Jet-Absorbers and Absorption Columns. Catalysts, 2020, 10, 653.	3.5	14
65	Electro-ozonizers: A new approach for an old problem. Separation and Purification Technology, 2020, 241, 116701.	7.9	26
66	Clopyralid degradation by AOPs enhanced with zero valent iron. Journal of Hazardous Materials, 2020, 392, 122282.	12.4	19
67	Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis. Science of the Total Environment, 2020, 713, 136647.	8.0	9
68	Testing the use of cells equipped with solid polymer electrolytes for electro-disinfection. Science of the Total Environment, 2020, 725, 138379.	8.0	26
69	Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation. Science of the Total Environment, 2020, 725, 138430.	8.0	46
70	Improvement of electrochemical oxidation efficiency through combination with adsorption processes. Journal of Environmental Management, 2020, 262, 110364.	7.8	23
71	Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes. Science of the Total Environment, 2020, 736, 139536.	8.0	35
72	Operating the CabECO® membrane electrolytic technology in continuous mode for the direct disinfection of highly fecal-polluted water. Separation and Purification Technology, 2019, 208, 110-115.	7.9	30

#	Article	IF	CITATIONS
73	Anodic oxidation for the remediation of soils polluted with perchloroethylene. Journal of Chemical Technology and Biotechnology, 2019, 94, 288-294.	3.2	9
74	Development of a novel electrochemical coagulant dosing unit for water treatment. Journal of Chemical Technology and Biotechnology, 2019, 94, 216-221.	3.2	7
75	Environmental applications of electrochemical technology. What is needed to enable full-scale applications?. Current Opinion in Electrochemistry, 2019, 16, 149-156.	4.8	87
76	Can the substrate of the diamond anodes influence on the performance of the electrosynthesis of oxidants?. Journal of Electroanalytical Chemistry, 2019, 850, 113416.	3.8	19
77	Towards the scale up of a pressurized-jet microfluidic flow-through reactor for cost-effective electro-generation of H2O2. Journal of Cleaner Production, 2019, 211, 1259-1267.	9.3	50
78	Enhanced electrolytic treatment for the removal of clopyralid and lindane. Chemosphere, 2019, 234, 132-138.	8.2	27
79	Reactor design as a critical input in the electrochemical production of peroxoacetic acid. Journal of Chemical Technology and Biotechnology, 2019, 94, 2955-2960.	3.2	6
80	Effects of ultrasound irradiation on the electrochemical treatment of wastes containing micelles. Applied Catalysis B: Environmental, 2019, 248, 108-114.	20.2	19
81	The Role of Mediated Oxidation on the Electro-irradiated Treatment of Amoxicillin and Ampicillin Polluted Wastewater. Catalysts, 2019, 9, 9.	3.5	19
82	Electrolysis with diamond anodes of the effluents of a combined soil washing – ZVI dechlorination process. Journal of Hazardous Materials, 2019, 369, 577-583.	12.4	9
83	A comparison of the electrolysis of soil washing wastes with active and non-active electrodes. Chemosphere, 2019, 225, 19-26.	8.2	16
84	The Role of the Anode Material in Selective Penicillin G Oxidation in Urine. ChemElectroChem, 2019, 6, 1376-1384.	3.4	31
85	Electrochemical production of perchlorate as an alternative for the valorization of brines. Chemosphere, 2019, 220, 637-643.	8.2	9
86	A new electrochemically-based process for the removal of perchloroethylene from gaseous effluents. Chemical Engineering Journal, 2019, 361, 609-614.	12.7	15
87	Competitive Anodic Oxidation of Methyl Paraben and Propylene Glycol: Keys to Understand the Process. ChemElectroChem, 2019, 6, 771-778.	3.4	9
88	Techno-economic analysis of the scale-up process of electrochemically-assisted soil remediation. Journal of Environmental Management, 2019, 231, 570-575.	7.8	19
89	Electrochemical dewatering for the removal of hazardous species from sludge. Journal of Environmental Management, 2019, 233, 768-773.	7.8	8
90	Integrating ZVI-dehalogenation into an electrolytic soil-washing cell. Separation and Purification Technology, 2019, 211, 28-34.	7.9	11

#	Article	IF	Citations
91	Coupling Ultrasound to the Electroâ€Oxidation of Methyl Paraben Synthetic Wastewater: Effect of Frequency and Supporting Electrolyte. ChemElectroChem, 2019, 6, 1199-1205.	3.4	21
92	Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation. Journal of Hazardous Materials, 2019, 372, 77-84.	12.4	16
93	Effect of the electrolyte on the electrolysis and photoelectrolysis of synthetic methyl paraben polluted wastewater. Separation and Purification Technology, 2019, 208, 201-207.	7.9	32
94	On the design of a jet-aerated microfluidic flow-through reactor for wastewater treatment by electro-Fenton. Separation and Purification Technology, 2019, 208, 123-129.	7.9	40
95	Radiation-assisted electrochemical processes in semi-pilot scale for the removal of clopyralid from soil washing wastes. Separation and Purification Technology, 2019, 208, 100-109.	7.9	27
96	The pressurized jet aerator: A new aeration system for high-performance H2O2 electrolyzers. Electrochemistry Communications, 2018, 89, 19-22.	4.7	35
97	Coupling Photo and Sono Technologies with BDD Anodic Oxidation for Treating Soil-Washing Effluent Polluted with Atrazine. Journal of the Electrochemical Society, 2018, 165, E262-E267.	2.9	18
98	A new strategy for the electrolytic removal of organics based on adsorption onto granular activated carbon. Electrochemistry Communications, 2018, 90, 47-50.	4.7	35
99	Disinfection of urine by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2018, 229, 63-70.	20.2	48
100	Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning. Chemosphere, 2018, 199, 477-485.	8.2	46
101	Electrolysis with diamond anodes: Eventually, there are refractory species!. Chemosphere, 2018, 195, 771-776.	8.2	18
102	Are electrochemical fences effective in the retention of pollution?. Separation and Purification Technology, 2018, 201, 19-24.	7.9	5
103	Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. Water Research, 2018, 128, 383-392.	11.3	61
104	Influence of the supporting electrolyte on the removal of ionic liquids by electrolysis with diamond anodes. Catalysis Today, 2018, 313, 203-210.	4.4	17
105	Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study. Separation and Purification Technology, 2018, 192, 196-204.	7.9	31
106	Removal of pharmaceuticals from the urine of polymedicated patients: A first approach. Chemical Engineering Journal, 2018, 331, 606-614.	12.7	36
107	Electro-bioremediation at the prototype scale: What it should be learned for the scale-up. Chemical Engineering Journal, 2018, 334, 2030-2038.	12.7	33
108	Removal of 2,4-D herbicide in soils using a combined process based on washing and adsorption electrochemically assisted. Separation and Purification Technology, 2018, 194, 19-25.	7.9	22

#	Article	IF	Citations
109	ZVI – Reactive barriers for the remediation of soils polluted with clopyralid: Are they really Worth?. Chemical Engineering Journal, 2018, 350, 100-107.	12.7	30
110	Improving the catalytic effect of peroxodisulfate and peroxodiphosphate electrochemically generated at diamond electrode by activation with light irradiation. Chemosphere, 2018, 207, 774-780.	8.2	21
111	Can CabECO® technology be used for the disinfection of highly faecal-polluted surface water?. Chemosphere, 2018, 209, 346-352.	8.2	30
112	Development of an innovative approach for low-impact wastewater treatment: A microfluidic flow-through electrochemical reactor. Chemical Engineering Journal, 2018, 351, 766-772.	12.7	55
113	Pre-disinfection columns to improve the performance of the direct electro-disinfection of highly faecal-polluted surface water. Journal of Environmental Management, 2018, 222, 135-140.	7.8	12
114	Toward the Development of Efficient Electro-Fenton Reactors for Soil Washing Wastes through Microfluidic Cells. Industrial & Engineering Chemistry Research, 2018, 57, 10709-10717.	3.7	23
115	Reversible electrokinetic adsorption barriers for the removal of organochlorine herbicide from spiked soils. Science of the Total Environment, 2018, 640-641, 629-636.	8.0	24
116	Indirect Electrochemical Oxidation by Using Ozone, Hydrogen Peroxide, and Ferrate., 2018, , 165-192.		8
117	UV assisted electrochemical technologies for the removal of oxyfluorfen from soil washing wastes. Chemical Engineering Journal, 2017, 318, 2-9.	12.7	34
118	Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide. Catalysis Today, 2017, 280, 192-198.	4.4	29
119	Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches. Chemical Engineering Journal, 2017, 310, 581-588.	12.7	61
120	Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes. Ultrasonics Sonochemistry, 2017, 34, 115-122.	8.2	40
121	Combining bioadsorption and photoelectrochemical oxidation for the treatment of soilâ€washing effluents polluted with herbicide 2,4â€D. Journal of Chemical Technology and Biotechnology, 2017, 92, 83-89.	3.2	31
122	Removal of chlorsulfuron and 2,4-D from spiked soil using reversible electrokinetic adsorption barriers. Separation and Purification Technology, 2017, 178, 147-153.	7.9	22
123	Treatment of Soil-Washing Effluents Polluted with Herbicide Oxyfluorfen by Combined Biosorption–Electrolysis. Industrial & Engineering Chemistry Research, 2017, 56, 1903-1910.	3.7	22
124	Removal of pendimethalin from soil washing effluents using electrolytic and electro-irradiated technologies based on diamond anodes. Applied Catalysis B: Environmental, 2017, 213, 190-197.	20.2	35
125	Is it really important the addition of salts for the electrolysis of soil washing effluents?. Electrochimica Acta, 2017, 246, 372-379.	5.2	40
126	Removal of sulfate from mining waters by electrocoagulation. Separation and Purification Technology, 2017, 182, 87-93.	7.9	73

#	Article	IF	Citations
127	Multiphysics Implementation of Electrokinetic Remediation Models for Natural Soils and Porewaters. Electrochimica Acta, 2017, 225, 93-104.	5.2	58
128	Improving the Efficiency of Carbon Cloth for the Electrogeneration of H ₂ O ₂ : Role of Polytetrafluoroethylene and Carbon Black Loading. Industrial & Description of H ₂ . Research, 2017, 56, 12588-12595.	3.7	80
129	Effect of pressure on the electrochemical generation of hydrogen peroxide in undivided cells on carbon felt electrodes. Electrochimica Acta, 2017, 248, 169-177.	5.2	59
130	A microfluidic flow-through electrochemical reactor for wastewater treatment: A proof-of-concept. Electrochemistry Communications, 2017, 82, 85-88.	4.7	43
131	Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation. Journal of Hazardous Materials, 2017, 339, 232-238.	12.4	73
132	The jet aerator as oxygen supplier for the electrochemical generation of H2O2. Electrochimica Acta, 2017, 246, 466-474.	5.2	47
133	Irradiated-assisted electrochemical processes for the removal of persistent pollutants from real wastewater. Separation and Purification Technology, 2017, 175, 428-434.	7.9	28
134	Reversible electrokinetic adsorption barriers for the removal of atrazine and oxyfluorfen from spiked soils. Journal of Hazardous Materials, 2017, 322, 413-420.	12.4	53
135	Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation. Journal of Environmental Management, 2017, 195, 216-223.	7.8	51
136	Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: Some notes about the transport of inorganic species. Chemosphere, 2017, 166, 540-548.	8.2	44
137	Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides?. Chemosphere, 2017, 166, 549-555.	8.2	53
138	Photoelectrocatalytic Oxidation of Methyl Orange on a TiO ₂ Nanotubular Anode Using a Flow Cell. Chemical Engineering and Technology, 2016, 39, 135-141.	1.5	29
139	Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with the surrounding arrangements of electrodes. Science of the Total Environment, 2016, 559, 94-102.	8.0	25
140	Removal of oxyfluorfen from spiked soils using electrokinetic fences. Separation and Purification Technology, 2016, 167, 55-62.	7.9	20
141	What happens to inorganic nitrogen species during conductive diamond electrochemical oxidation of real wastewater?. Electrochemistry Communications, 2016, 67, 65-68.	4.7	41
142	Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with linear rows of electrodes. Chemical Engineering Journal, 2016, 294, 65-72.	12.7	32
143	Scale-up on electrokinetic remediation: Engineering and technological parameters. Journal of Hazardous Materials, 2016, 315, 135-143.	12.4	55
144	Electrochemical jet-cell for the in-situ generation of hydrogen peroxide. Electrochemistry Communications, 2016, 71, 65-68.	4.7	104

#	Article	IF	CITATIONS
145	Prescale-Up of Electro-Bioremediation Processes. , 2016, , .		2
146	Electrokinetic Remediation of Soils Polluted with Pesticides: Flushing and Fence Technologies. , 2016, , .		1
147	Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. Environmental Science and Pollution Research, 2016, 23, 19713-19722.	5.3	19
148	Integration of anodic and cathodic processes for the synergistic electrochemical production of peracetic acid. Electrochemistry Communications, 2016, 73, 1-4.	4.7	13
149	Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate. Separation and Purification Technology, 2016, 167, 127-135.	7.9	42
150	Removal of algae from biological cultures: a challenge for electrocoagulation?. Journal of Chemical Technology and Biotechnology, 2016, 91, 82-87.	3.2	15
151	Towards the scaleâ€up of electrolysis with diamond anodes: effect of stacking on the electrochemical oxidation of 2,4 D. Journal of Chemical Technology and Biotechnology, 2016, 91, 742-747.	3.2	19
152	Solar-powered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. Electrochimica Acta, 2016, 190, 371-377.	5.2	49
153	Application of electrokinetic soil flushing to four herbicides: A comparison. Chemosphere, 2016, 153, 205-211.	8.2	44
154	Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2016, 188, 305-312.	20.2	82
155	Optimization of a combined electrocoagulation-electroflotation reactor. Environmental Science and Pollution Research, 2016, 23, 9700-9711.	5.3	12
156	Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes. Journal of Environmental Management, 2016, 171, 260-266.	7.8	33
157	Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil. Journal of Environmental Management, 2016, 171, 128-132.	7.8	16
158	Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. Journal of Hazardous Materials, 2016, 319, 93-101.	12.4	91
159	Electrokinetic flushing with surrounding electrode arrangements for the remediation of soils that are polluted with 2,4-D: A case study in a pilot plant. Science of the Total Environment, 2016, 545-546, 256-265.	8.0	39
160	The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes. Electrochimica Acta, 2016, 187, 119-124.	5.2	54
161	Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 44-51.	1.7	12
162	Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: A case study in a pilot plant. Chemical Engineering Journal, 2016, 285, 128-136.	12.7	54

#	Article	IF	CITATIONS
163	Removal of pesticide 2,4-D by conductive-diamond photoelectrochemical oxidation. Applied Catalysis B: Environmental, 2016, 180, 733-739.	20.2	40
164	A wind-powered BDD electrochemical oxidation process for the removal of herbicides. Journal of Environmental Management, 2015, 158, 36-39.	7.8	46
165	Removal of herbicide 2,4-D using conductive-diamond sono-electrochemical oxidation. Separation and Purification Technology, 2015, 149, 24-30.	7.9	40
166	Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. Journal of Electroanalytical Chemistry, 2015, 757, 144-149.	3.8	26
167	Combined soil washing and CDEO for the removal of atrazine from soils. Journal of Hazardous Materials, 2015, 300, 129-134.	12.4	75
168	Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2,4-D. Chemical Engineering Journal, 2015, 277, 64-69.	12.7	27
169	Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere, 2015, 136, 281-288.	8.2	29
170	The role of particle size on the conductive diamond electrochemical oxidation of soil-washing effluent polluted with atrazine. Electrochemistry Communications, 2015, 55, 26-29.	4.7	64
171	Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. Journal of Applied Electrochemistry, 2015, 45, 799-808.	2.9	48
172	Electrochemically assisted fences for the electroremediation of soils polluted with 2,4-D: A case study in a pilot plant. Separation and Purification Technology, 2015, 156, 234-241.	7.9	46
173	Is it worth the use of bipolar electrodes in electrolytic wastewater treatment processes?. Chemical Engineering Journal, 2015, 264, 310-315.	12.7	13
174	Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2015, 166-167, 454-459.	20.2	69
175	Electrochemical removal of dimethyl phthalate with diamond anodes. Journal of Chemical Technology and Biotechnology, 2014, 89, 282-289.	3.2	28
176	Electroremediation of a natural soil polluted with phenanthrene in a pilot plant. Journal of Hazardous Materials, 2014, 265, 142-150.	12.4	71
177	Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2014, 144, 121-128.	20.2	57
178	Coupling ultraviolet light and ultrasound irradiation with Conductive-Diamond Electrochemical Oxidation for the removal of progesterone. Electrochimica Acta, 2014, 140, 20-26.	5.2	56
179	Using a new photoâ€reactor to promote conductiveâ€diamond electrochemical oxidation of dimethyl phthalate. Journal of Chemical Technology and Biotechnology, 2014, 89, 1251-1258.	3.2	24
180	Removal of phenanthrene from synthetic kaolin soils by electrokinetic soil flushing. Separation and Purification Technology, 2014, 132, 33-40.	7.9	42

#	Article	IF	Citations
181	High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes. Environmental Science and Pollution Research, 2014, 21, 8442-8450.	5.3	34
182	Production of oxidants via electrolysis of carbonate solutions with conductive-diamond anodes. Chemical Engineering Journal, 2013, 230, 272-278.	12.7	59
183	Sonoelectrolysis of Wastewaters Polluted with Dimethyl Phthalate. Industrial & Engineering Chemistry Research, 2013, 52, 9674-9682.	3.7	31
184	The Treatment of Actual Industrial Wastewaters Using Electrochemical Techniques. Electrocatalysis, 2013, 4, 252-258.	3.0	19
185	Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes. Open Chemistry, 2013, 11, 1213-1224.	1.9	5
186	Arsenic Removal from High-Arsenic Water Sources by Coagulation and Electrocoagulation. Separation Science and Technology, 2013, 48, 508-514.	2.5	20
187	Modelling and cost evaluation of electro-coagulation processes for the removal of anions from water. Separation and Purification Technology, 2013, 107, 219-227.	7.9	30
188	Electrochemical Degradation of the Reactive Red 141 Dye Using a Boron-Doped Diamond Anode. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	36
189	On the applications of peroxodiphosphate produced by BDD-electrolyses. Chemical Engineering Journal, 2013, 233, 8-13.	12.7	54
190	Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere, 2013, 93, 1720-1725.	8.2	58
191	Removal of triclosan by conductiveâ€diamond electrolysis and sonoelectrolysis. Journal of Chemical Technology and Biotechnology, 2013, 88, 823-828.	3.2	43
192	Electrochemical coagulation of treated wastewaters for reuse. Desalination and Water Treatment, 2013, 51, 3381-3388.	1.0	18
193	Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters. Chemical Engineering Journal, 2012, 211-212, 463-469.	12.7	71
194	Conductive-diamond electrochemical oxidation of chlorpyrifos in wastewater and identification of its main degradation products by LC–TOFMS. Chemosphere, 2012, 89, 1169-1176.	8.2	22
195	Electrochemical dosing of iron and aluminum in continuous processes: A key step to explain electro-coagulation processes. Separation and Purification Technology, 2012, 98, 102-108.	7.9	86
196	Electrocoagulation of the effluents from surfactant-aided soil-remediation processes. Separation and Purification Technology, 2012, 98, 88-93.	7.9	28
197	Electrochemical Degradation of a Real Pharmaceutical Effluent. Water, Air, and Soil Pollution, 2012, 223, 2685-2694.	2.4	48
198	Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes. Chemical Engineering Journal, 2012, 184, 221-227.	12.7	82

#	Article	IF	Citations
199	The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. Separation and Purification Technology, 2012, 88, 46-51.	7.9	97
200	Metoprolol abatement from wastewaters by electrochemical oxidation with boron doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2012, 87, 225-231.	3.2	34
201	Electrolysis of progesterone with conductiveâ€diamond electrodes. Journal of Chemical Technology and Biotechnology, 2012, 87, 1173-1178.	3.2	32
202	Removal of sulfamethoxazole from waters and wastewaters by conductiveâ€diamond electrochemical oxidation. Journal of Chemical Technology and Biotechnology, 2012, 87, 1441-1449.	3.2	56
203	Electrochemical Synthesis of Peroxyacetic Acid Using Conductive Diamond Electrodes. Industrial & Electrochemical Chemistry Research, 2011, 50, 10889-10893.	3.7	21
204	Improvements in the Electrochemical Production of Ferrates with Conductive Diamond Anodes Using Goethite as Raw Material and Ultrasound. Industrial & Engineering Chemistry Research, 2011, 50, 7073-7076.	3.7	22
205	Use of low current densities in electrolyses with conductive-diamond electrochemical $\hat{a} \in \mathbb{C}$ Oxidation to disinfect treated wastewaters for reuse. Electrochemistry Communications, 2011, 13, 1268-1270.	4.7	55
206	Removal of nitrates from groundwater by electrocoagulation. Chemical Engineering Journal, 2011, 171, 1012-1017.	12.7	133
207	Electrochemical phosphates removal using iron and aluminium electrodes. Chemical Engineering Journal, 2011, 172, 137-143.	12.7	108
208	Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Separation and Purification Technology, 2011, 79, 15-19.	7.9	67
209	Electrochemical production of perchlorates using conductive diamond electrolyses. Chemical Engineering Journal, 2011, 166, 710-714.	12.7	148
210	Influence of the Type of Surfactant on the Mobility of Flushing Fluids for Electro-Remediation Processes. Separation Science and Technology, 2011, 46, 2148-2156.	2.5	24
211	Electro-osmotic fluxes in multi-well electro-remediation processes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1549-1557.	1.7	28
212	Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants., 2010,, 99-124.		0
213	Electrochemical technologies for the regeneration of urban wastewaters. Electrochimica Acta, 2010, 55, 8160-8164.	5.2	91
214	Electrochemical synthesis of perbromate using conductive-diamond anodes. Journal of Applied Electrochemistry, 2010, 40, 1715-1719.	2.9	18
215	Study of the production of hydrogen bubbles at low current densities for electroflotation processes. Journal of Chemical Technology and Biotechnology, 2010, 85, 1368-1373.	3.2	32
216	Electrochemical synthesis of ferrate in presence of ultrasound using boron doped diamond anodes. Electrochemistry Communications, 2010, 12, 644-646.	4.7	28

#	Article	IF	CITATIONS
217	Use of conductive-diamond electrochemical oxidation for wastewater treatment. Catalysis Today, 2010, 151, 173-177.	4.4	146
218	Ten steps modeling of electrolysis processes by using neural networks. Environmental Modelling and Software, 2010, 25, 74-81.	4.5	45
219	Improving the Efficiencies of Batch Coagulation Processes with Small Modifications in the pH. Separation Science and Technology, 2010, 45, 1411-1417.	2.5	6
220	Conductive-Diamond Electrochemical Oxidation of Surfactant-Aided Soil-Washing Effluents. Industrial & Engineering Chemistry Research, 2010, 49, 9631-9635.	3.7	37
221	Technical and economic comparison of conventional and electrochemical coagulation processes. Journal of Chemical Technology and Biotechnology, 2009, 84, 702-710.	3.2	29
222	Synthesis of novel oxidants by electrochemical technology. Journal of Applied Electrochemistry, 2009, 39, 2143-2149.	2.9	190
223	Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 2009, 90, 410-420.	7.8	330
224	The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. Journal of Hazardous Materials, 2009, 163, 158-164.	12.4	128
225	A comparison between Conductive-Diamond Electrochemical Oxidation and other Advanced Oxidation Processes for the treatment of synthetic melanoidins. Journal of Hazardous Materials, 2009, 164, 120-125.	12.4	46
226	Treatment of door-manufacturing factories wastewaters using CDEO and other AOPsA comparison. Journal of Hazardous Materials, 2009, 168, 358-363.	12.4	11
227	Electrocatalytic properties of diamond in the oxidation of a persistant pollutant. Applied Catalysis B: Environmental, 2009, 89, 645-650.	20.2	83
228	Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison. Water Research, 2009, 43, 2131-2138.	11.3	101
229	Electrooxidation of Brown-Colored Molasses Wastewater. Effect of the Electrolyte Salt on the Process Efficiency. Industrial & Engineering Chemistry Research, 2009, 48, 1298-1301.	3.7	37
230	Treatment of actual metalworking wastewaters by coagulation combined with electrochemical oxidation. International Journal of Environmental Engineering, 2009, 1, 238.	0.1	1
231	Modelling of wastewater electrocoagulation processesPart II: Application to dye-polluted wastewaters and oil-in-water emulsions. Separation and Purification Technology, 2008, 60, 147-154.	7.9	32
232	Electrosynthesis of ferrates with diamond anodes. AICHE Journal, 2008, 54, 1600-1607.	3.6	40
233	Modelling of wastewater electrocoagulation processesPart I. General description and application to kaolin-polluted wastewaters. Separation and Purification Technology, 2008, 60, 155-161.	7.9	39
234	Coagulation and electrocoagulation of oil-in-water emulsions. Journal of Hazardous Materials, 2008, 151, 44-51.	12.4	190

#	Article	IF	Citations
235	Influence of the characteristics of p-Si BDD anodes on the efficiency of peroxodiphosphate electrosynthesis process. Electrochemistry Communications, 2008, 10, 602-606.	4.7	50
236	Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes. Electrochimica Acta, 2008, 53, 2144-2153.	5.2	86
237	Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied. Chemosphere, 2008, 72, 1080-1085.	8.2	31
238	The Role of the Characteristics of p-Si BDD Anodes on the Efficiency of Wastewater Electro-oxidation Processes. Electrochemical and Solid-State Letters, 2008, 11, E15.	2.2	29
239	Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere, 2007, 67, 832-838.	8.2	167
240	Effect of the Operating Conditions on the Oxidation Mechanisms in Conductive-Diamond Electrolyses. Journal of the Electrochemical Society, 2007, 154, E37.	2.9	83
241	Study of the Electrocoagulation Process Using Aluminum and Iron Electrodes. Industrial & Engineering Chemistry Research, 2007, 46, 6189-6195.	3.7	178
242	Electrochemical Oxidation of Wastewaters Polluted with Aromatics and Heterocyclic Compounds. Journal of the Electrochemical Society, 2007, 154, E165.	2.9	43
243	Electrochemical incineration of dyes using a boron-doped diamond anode. Journal of Chemical Technology and Biotechnology, 2007, 82, 575-581.	3.2	99
244	Electrochemical synthesis of ferrate using boron doped diamond anodes. Electrochemistry Communications, 2007, 9, 2286-2290.	4.7	45
245	Electrochemical treatment of the pollutants generated in an ink-manufacturing process. Journal of Hazardous Materials, 2007, 146, 552-557.	12.4	57
246	Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes. Journal of Applied Electrochemistry, 2007, 38, 93-100.	2.9	56
247	Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources, 2007, 169, 198-204.	7.8	217
248	Electrochemical Oxidation of Azoic Dyes with Conductive-Diamond Anodes. Industrial & Engineering Chemistry Research, 2006, 45, 3468-3473.	3.7	121
249	Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochimica Acta, 2006, 52, 325-331.	5.2	138
250	A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2H2. International Journal of Hydrogen Energy, 2006, 31, 1780-1790.	7.1	36
251	Electrochemical treatment of the effluent of a fine chemical manufacturing plant. Journal of Hazardous Materials, 2006, 138, 173-181.	12.4	83
252	Detoxification of synthetic industrial wastewaters using electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2006, 81, 352-358.	3.2	38

#	Article	IF	CITATIONS
253	Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2006, 81, 1331-1337.	3.2	96
254	Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Research, 2005, 39, 2687-2703.	11.3	354
255	Electrochemical Synthesis of Peroxodiphosphate Using Boron-Doped Diamond Anodes. Journal of the Electrochemical Society, 2005, 152, D191.	2.9	114
256	Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes. Environmental Science & Env	10.0	181
257	Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions. Journal of Applied Electrochemistry, 2004, 34, 87-94.	2.9	115
258	Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochimica Acta, 2004, 49, 4641-4650.	5.2	122
259	Electrochemical Oxidation of Polyhydroxybenzenes on Boron-Doped Diamond Anodes. Industrial & Lamp; Engineering Chemistry Research, 2004, 43, 6629-6637.	3.7	85
260	Electrochemical Treatment of 4-Nitrophenol-Containing Aqueous Wastes Using Boron-Doped Diamond Anodes. Industrial & Engineering Chemistry Research, 2004, 43, 1944-1951.	3.7	208
261	Electrochemical oxidation of several chlorophenols on diamond electrodes Part I. Reaction mechanism. Journal of Applied Electrochemistry, 2003, 33, 917-927.	2.9	134
262	Combined electrooxidation and assisted electrochemical coagulation of aqueous phenol wastes. Journal of Applied Electrochemistry, 2002, 32, 1241-1246.	2.9	33