
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/79049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous Silicon in Drug Delivery Applications. Journal of Pharmaceutical Sciences, 2008, 97, 632-653.	3.3	398
2	Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chemical Communications, 2008, , 459-461.	4.1	327
3	Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats. ACS Nano, 2010, 4, 3023-3032.	14.6	316
4	Physiologically Based Pharmacokinetic Modeling of Nanoparticles. ACS Nano, 2010, 4, 6303-6317.	14.6	313
5	Length-Dependent Retention of Carbon Nanotubes in the Pleural Space of Mice Initiates Sustained Inflammation and Progressive Fibrosis on the Parietal Pleura. American Journal of Pathology, 2011, 178, 2587-2600.	3.8	278
6	Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nature Materials, 2010, 9, 485-490.	27.5	267
7	Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials, 2012, 33, 3334-3343.	11.4	224
8	Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10952-10957.	7.1	217
9	Dynamic Imaging of Functionalized Multiâ€Walled Carbon Nanotube Systemic Circulation and Urinary Excretion. Advanced Materials, 2008, 20, 225-230.	21.0	196
10	Functionalizedâ€Quantumâ€Dot–Liposome Hybrids as Multimodal Nanoparticles for Cancer. Small, 2008, 4, 1406-1415.	10.0	178
11	The interaction of carbon nanotubes with an inÂvitro blood-brain barrier model and mouse brain inÂvivo. Biomaterials, 2015, 53, 437-452.	11.4	178
12	Synthesis and Characterization of a Carbon Nanotubeâ^'Dendron Series for Efficient siRNA Delivery. Journal of the American Chemical Society, 2009, 131, 9843-9848.	13.7	168
13	Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. Journal of Controlled Release, 2016, 241, 200-219.	9.9	157
14	Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2014, 8, 1384-1401.	14.6	155
15	Antitumor Activity and Prolonged Survival by Carbonâ€Nanotubeâ€Mediated Therapeutic siRNA Silencing in a Human Lung Xenograft Model. Small, 2009, 5, 1176-1185.	10.0	153
16	Lipidâ^'Quantum Dot Bilayer Vesicles Enhance Tumor Cell Uptake and Retention <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2008, 2, 408-418.	14.6	141
17	Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. Nano Letters, 2016, 16, 5652-5660.	9.1	140
18	Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: A comprehensive overview. Biosensors and Bioelectronics, 2020, 161, 112222.	10.1	128

#	Article	IF	CITATIONS
19	Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nature Communications, 2021, 12, 5726.	12.8	126
20	Supramolecular structures from dendrons and dendrimers. Advanced Drug Delivery Reviews, 2005, 57, 2238-2270.	13.7	124
21	Cationic Poly- <scp>l</scp> -lysine Dendrimer Complexes Doxorubicin and Delays Tumor Growth <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 1905-1917.	14.6	124
22	Selection of Fluorescent, Bioluminescent, and Radioactive Tracers to Accurately Reflect Extracellular Vesicle Biodistribution <i>in Vivo</i> . ACS Nano, 2021, 15, 3212-3227.	14.6	115
23	Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials, 2016, 104, 310-322.	11.4	114
24	Tumor Targeting of Functionalized Quantum Dotâ^'Liposome Hybrids by Intravenous Administration. Molecular Pharmaceutics, 2009, 6, 520-530.	4.6	111
25	Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo. Journal of Controlled Release, 2016, 225, 217-229.	9.9	111
26	Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale, 2011, 3, 2627.	5.6	110
27	Degree of Chemical Functionalization of Carbon Nanotubes Determines Tissue Distribution and Excretion Profile. Angewandte Chemie - International Edition, 2012, 51, 6389-6393.	13.8	109
28	<i>In vivo</i> degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine, 2012, 7, 1485-1494.	3.3	104
29	Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3966-3971.	7.1	97
30	Challenges and prospects of nanosized silicon anodes in lithium-ion batteries. Nanotechnology, 2021, 32, 042002.	2.6	95
31	Hybrid Polymerâ€Grafted Multiwalled Carbon Nanotubes for In vitro Gene Delivery. Small, 2010, 6, 2281-2291.	10.0	94
32	Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo. Small, 2015, 11, 4704-4722.	10.0	94
33	Membrane Radiolabelling of Exosomes for Comparative Biodistribution Analysis in Immunocompetent and Immunodeficient Mice - A Novel and Universal Approach. Theranostics, 2019, 9, 1666-1682.	10.0	94
34	Functionalized Carbon Nanotubes in the Brain: Cellular Internalization and Neuroinflammatory Responses. PLoS ONE, 2013, 8, e80964.	2.5	89
35	Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS Nano, 2015, 9, 7815-7830.	14.6	86
36	Cellular Uptake and Cytotoxic Impact of Chemically Functionalized and Polymer oated Carbon Nanotubes. Small, 2011, 7, 3230-3238.	10.0	84

#	Article	IF	CITATIONS
37	Surface Chemistry, Reactivity, and Pore Structure of Porous Silicon Oxidized by Various Methods. Langmuir, 2012, 28, 10573-10583.	3.5	82
38	Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents. Advanced Functional Materials, 2014, 24, 1880-1894.	14.9	72
39	Enhanced cellular internalization and gene silencing with a series of cationic dendronâ€multiwalled carbon nanotube:siRNA complexes. FASEB Journal, 2010, 24, 4354-4365.	0.5	71
40	Preparation of Exosomes for siRNA Delivery to Cancer Cells. Journal of Visualized Experiments, 2018, , .	0.3	69
41	Nanoparticles functionalised with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials, 2010, 31, 1307-1315.	11.4	68
42	¹⁸ F-Labeled Modified Porous Silicon Particles for Investigation of Drug Delivery Carrier Distribution in Vivo with Positron Emission Tomography. Molecular Pharmaceutics, 2011, 8, 1799-1806.	4.6	65
43	Development of Porous Silicon Nanocarriers for Parenteral Peptide Delivery. Molecular Pharmaceutics, 2013, 10, 353-359.	4.6	65
44	Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. Journal of Controlled Release, 2012, 161, 290-306.	9.9	63
45	Design, engineering and structural integrity of electro-responsive carbon nanotube- based hydrogels for pulsatile drug release. Journal of Materials Chemistry B, 2013, 1, 4593.	5.8	63
46	Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy. Molecular Pharmaceutics, 2015, 12, 4038-4047.	4.6	63
47	Novel Delivery Systems for Improving the Clinical Use of Peptides. Pharmacological Reviews, 2015, 67, 541-561.	16.0	62
48	Investigating the effect of tumor vascularization on magnetic targeting inÂvivo using retrospective design of experiment. Biomaterials, 2016, 106, 276-285.	11.4	62
49	Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration. Acta Biomaterialia, 2015, 13, 207-215.	8.3	60
50	Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. Journal of Controlled Release, 2019, 297, 79-90.	9.9	59
51	Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosensors and Bioelectronics, 2020, 169, 112576.	10.1	59
52	Utilising thermoporometry to obtain new insights into nanostructured materials. Journal of Thermal Analysis and Calorimetry, 2011, 105, 811-821.	3.6	58
53	Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication. Bioconjugate Chemistry, 2015, 26, 1370-1379.	3.6	58
54	Temperature responsive porous silicon nanoparticles for cancer therapy – spatiotemporal triggering through infrared and radiofrequency electromagnetic heating. Journal of Controlled Release, 2016, 241, 220-228.	9.9	58

#	Article	IF	CITATIONS
55	The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles inÂvivo. Biomaterials, 2014, 35, 9517-9528.	11.4	57
56	Blood Circulation and Tissue Biodistribution of Lipidâ^'Quantum Dot (L-QD) Hybrid Vesicles Intravenously Administered in Mice. Bioconjugate Chemistry, 2009, 20, 1696-1702.	3.6	55
57	Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid Tumours <i>In Vivo</i> . Theranostics, 2016, 6, 342-356.	10.0	55
58	Doxorubicin-loaded lipid-quantum dot hybrids: Surface topography and release properties. International Journal of Pharmaceutics, 2011, 416, 443-447.	5.2	54
59	Nanoengineering Artificial Lipid Envelopes Around Adenovirus by Self-Assembly. ACS Nano, 2008, 2, 1040-1050.	14.6	53
60	Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomaterialia, 2018, 76, 239-256.	8.3	53
61	Cytotoxic Assessment of Carbon Nanotube Interaction with Cell Cultures. Methods in Molecular Biology, 2011, 726, 299-312.	0.9	52
62	Functionalization of Mesoporous Silicon Nanoparticles for Targeting and Bioimaging Purposes. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	52
63	Carbon nanotubes' surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo. Journal of Controlled Release, 2016, 225, 205-216.	9.9	52
64	Design of experiment (DoE)â€driven <i>in vitro</i> and <i>in vivo</i> uptake studies of exosomes for pancreatic cancer delivery enabled by copperâ€free click chemistryâ€based labelling. Journal of Extracellular Vesicles, 2020, 9, 1779458.	12.2	52
65	Chlorin e6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 23441-23449.	8.0	51
66	Mesoporous systems for poorly soluble drugs – recent trends. International Journal of Pharmaceutics, 2018, 536, 178-186.	5.2	51
67	Application of carbon nanotubes in neurology: clinical perspectives and toxicological risks. Archives of Toxicology, 2012, 86, 1009-1020.	4.2	50
68	An intrinsically fluorescent dendrimer as a nanoprobe of cell transport. Journal of Drug Targeting, 2006, 14, 405-412.	4.4	48
69	Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses. Journal of Controlled Release, 2016, 224, 22-32.	9.9	48
70	Functionalised Carbon Nanotubes Enhance Brain Delivery of Amyloid-Targeting Pittsburgh Compound B (PiB)-Derived Ligands. Nanotheranostics, 2018, 2, 168-183.	5.2	48
71	Ammonium and Guanidinium Dendron–Carbon Nanotubes by Amidation and Click Chemistry and their Use for siRNA Delivery. Small, 2013, 9, 3610-3619.	10.0	45
72	Exosome-mediated RNAi of PAK4 prolongs survival of pancreatic cancer mouse model after loco-regional treatment. Biomaterials, 2021, 264, 120369.	11.4	44

#	Article	IF	CITATIONS
73	Synthesis of double-clickable functionalised graphene oxide for biological applications. Chemical Communications, 2015, 51, 14981-14984.	4.1	43
74	Novel Hyaluronic Acid Conjugates for Dual Nuclear Imaging and Therapy in CD44-Expressing Tumors in Mice <i>In Vivo</i> . Nanotheranostics, 2017, 1, 59-79.	5.2	42
75	Utilising thermoporometry to obtain new insights into nanostructured materials. Journal of Thermal Analysis and Calorimetry, 2011, 105, 823-830.	3.6	41
76	Amine Surface Modifications and Fluorescent Labeling of Thermally Stabilized Mesoporous Silicon Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 22307-22314.	3.1	41
77	Functionalized carbon nanotubes: revolution in brain delivery. Nanomedicine, 2015, 10, 2639-2642.	3.3	40
78	Tailored Dual PEGylation of Inorganic Porous Nanocarriers for Extremely Long Blood Circulation in Vivo. ACS Applied Materials & Interfaces, 2016, 8, 32723-32731.	8.0	39
79	Polyamine functionalized carbon nanotubes: synthesis, characterization, cytotoxicity and siRNA binding. Journal of Materials Chemistry, 2011, 21, 4850.	6.7	38
80	Systematic inÂvitro and inÂvivo study on porous silicon to improve the oral bioavailability of celecoxib. Biomaterials, 2015, 52, 44-55.	11.4	38
81	Dendrisomes: cationic lipidic dendron vesicular assemblies. International Journal of Pharmaceutics, 2003, 254, 33-36.	5.2	37
82	Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 100, 1-8.	4.3	37
83	Neutron Activated ¹⁵³ Sm Sealed in Carbon Nanocapsules for <i>in Vivo</i> Imaging and Tumor Radiotherapy. ACS Nano, 2020, 14, 129-141.	14.6	37
84	Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide. ACS Applied Materials & Interfaces, 2015, 7, 18920-18923.	8.0	35
85	Scalable Synthesis of Biodegradable Black Mesoporous Silicon Nanoparticles for Highly Efficient Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 23529-23538.	8.0	35
86	Bioinspired Polymerization of Quercetin to Produce a Curcumin-Loaded Nanomedicine with Potent Cytotoxicity and Cancer-Targeting Potential in Vivo. ACS Biomaterials Science and Engineering, 2019, 5, 6036-6045.	5.2	34
87	Surface engineered nanoliposomal platform for selective lymphatic uptake of asenapine maleate: In vitro and in vivo studies. Materials Science and Engineering C, 2020, 109, 110620.	7.3	33
88	Regulatory T Cell Extracellular Vesicles Modify T-Effector Cell Cytokine Production and Protect Against Human Skin Allograft Damage. Frontiers in Cell and Developmental Biology, 2020, 8, 317.	3.7	32
89	Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy. ACS Applied Materials & Interfaces, 2022, 14, 33555-33566.	8.0	32
90	Carbon nanotube-mediated wireless cell permeabilization: drug and gene uptake. Nanomedicine, 2011, 6, 1709-1718.	3.3	31

#	Article	IF	CITATIONS
91	Organic Solvent-Free, One-Step Engineering of Graphene-Based Magnetic-Responsive Hybrids Using Design of Experiment-Driven Mechanochemistry. ACS Applied Materials & Interfaces, 2015, 7, 14176-14181.	8.0	31
92	Effects of cooling rate in microscale and pilot scale freeze-drying – Variations in excipient polymorphs and protein secondary structure. European Journal of Pharmaceutical Sciences, 2016, 95, 72-81.	4.0	31
93	Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode. Scientific Reports, 2020, 10, 5589.	3.3	31
94	Enhanced Delivery of Neuroactive Drugs via Nasal Delivery with a Selfâ€Healing Supramolecular Gel. Advanced Science, 2021, 8, e2101058.	11.2	31
95	Tailoring the Architecture of Cationic Polymer Brush-Modified Carbon Nanotubes for Efficient siRNA Delivery in Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2021, 13, 30284-30294.	8.0	30
96	Porous silicon micro- and nanoparticles for printed humidity sensors. Applied Physics Letters, 2012, 101, .	3.3	29
97	An "eat me―combinatory nano-formulation for systemic immunotherapy of solid tumors. Theranostics, 2021, 11, 8738-8754.	10.0	29
98	Assessment of Cellular Uptake and Cytotoxicity of Carbon Nanotubes Using Flow Cytometry. Methods in Molecular Biology, 2010, 625, 123-134.	0.9	28
99	A Nanostopper Approach To Selectively Engineer the Surfaces of Mesoporous Silicon. Chemistry of Materials, 2014, 26, 6734-6742.	6.7	28
100	Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale, 2016, 8, 12626-12638.	5.6	28
101	Nano-technology based carriers for nitrogen-containing bisphosphonates delivery as sensitisers of γδT cells for anticancer immunotherapy. Advanced Drug Delivery Reviews, 2017, 114, 143-160.	13.7	28
102	Enhanced antitubercular activity, alveolar deposition and macrophages uptake of mannosylated stable nanoliposomes. Journal of Drug Delivery Science and Technology, 2019, 51, 513-523.	3.0	28
103	Dendrisomes: Vesicular Structures Derived from a Cationic Lipidic Dendron. Journal of Pharmaceutical Sciences, 2005, 94, 102-113.	3.3	27
104	Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy <i>in vitro</i> . Nanomedicine, 2017, 12, 711-728.	3.3	27
105	Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging. ACS Applied Materials & Interfaces, 2017, 9, 35234-35243.	8.0	27
106	Combinatory Delivery of Etoposide and siCD47 in a Lipid Polymer Hybrid Delays Lung Tumor Growth in an Experimental Melanoma Lung Metastatic Model. Advanced Healthcare Materials, 2021, 10, e2001853.	7.6	26
107	Cationic Liposome- Multi-Walled Carbon Nanotubes Hybrids for Dual siPLK1 and Doxorubicin Delivery In Vitro. Pharmaceutical Research, 2015, 32, 3293-3308.	3.5	25
108	In vitro potency, in vitro and in vivo efficacy of liposomal alendronate in combination with γδT cell immunotherapy in mice. Journal of Controlled Release, 2016, 241, 229-241.	9.9	25

#	Article	IF	CITATIONS
109	Investigating in vitro and in vivo αvl ² 6 integrin receptor-targeting liposomal alendronate for combinatory γδT cell immunotherapy. Journal of Controlled Release, 2017, 256, 141-152.	9.9	25
110	Toward Controlled Photothermal Treatment of Single Cell: Optically Induced Heating and Remote Temperature Monitoring In Vitro through Double Wavelength Optical Tweezers. ACS Photonics, 2017, 4, 1993-2002.	6.6	25
111	Asenapine maleate-loaded nanostructured lipid carriers: optimization and <i>in vitro</i> , <i>ex vivo</i> and <i>in vivo</i> evaluations. Nanomedicine, 2019, 14, 889-910.	3.3	25
112	Mechanical penetration of β-lactam–resistant Gram-negative bacteria by programmable nanowires. Science Advances, 2020, 6, .	10.3	23
113	Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image. Annals of Biomedical Engineering, 2017, 45, 2857-2866.	2.5	22
114	Anti-angiogenic poly-L-lysine dendrimer binds heparin and neutralizes its activity. Results in Pharma Sciences, 2012, 2, 9-15.	4.2	21
115	An electric-field responsive microsystem for controllable miniaturised drug delivery applications. Sensors and Actuators B: Chemical, 2012, 175, 100-105.	7.8	21
116	Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper. Journal of Sensors, 2015, 2015, 1-10.	1.1	21
117	The Shortening of MWNT-SPION Hybrids by Steam Treatment Improves Their Magnetic Resonance Imaging Properties In Vitro and In Vivo. Small, 2016, 12, 2893-2905.	10.0	21
118	Engineering hepatitis B virus core particles for targeting HER2 receptors inÂvitro and inÂvivo. Biomaterials, 2017, 120, 126-138.	11.4	21
119	Protein oronaâ€byâ€Design in 2D: A Reliable Platform to Decode Bio–Nano Interactions for the Nextâ€Generation Qualityâ€byâ€Design Nanomedicines. Advanced Materials, 2018, 30, e1802732.	21.0	21
120	Defined serumâ€free threeâ€dimensional culture of umbilical cordâ€derived mesenchymal stem cells yields exosomes that promote fibroblast proliferation and migration in vitro. FASEB Journal, 2021, 35, e21206.	0.5	21
121	Kupffer Cell Isolation for Nanoparticle Toxicity Testing. Journal of Visualized Experiments, 2015, , e52989.	0.3	20
122	Doxorubicin enhances curcumin's cytotoxicity in human prostate cancer cells in vitro by enhancing its cellular uptake. International Journal of Pharmaceutics, 2016, 514, 169-175.	5.2	20
123	Microwave-Assisted Synthesis of SPION-Reduced Graphene Oxide Hybrids for Magnetic Resonance Imaging (MRI). Nanomaterials, 2019, 9, 1364.	4.1	20
124	An integrated vitamin E-coated polymer hybrid nanoplatform: A lucrative option for an enhanced in vitro macrophage retention for an anti-hepatitis B therapeutic prospect. PLoS ONE, 2020, 15, e0227231.	2.5	20
125	Inhalable DNase I microparticles engineered with biologically active excipients. Pulmonary Pharmacology and Therapeutics, 2013, 26, 700-709.	2.6	19
126	Real-time monitoring of magnetic drug targeting using fibered confocal fluorescence microscopy. Journal of Controlled Release, 2016, 244, 240-246.	9.9	19

#	Article	IF	CITATIONS
127	Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Advanced Drug Delivery Reviews, 2022, 180, 114030.	13.7	19
128	PET Imaging of Small Extracellular Vesicles <i>via</i> [⁸⁹ Zr]Zr(oxinate) ₄ Direct Radiolabeling. Bioconjugate Chemistry, 2022, 33, 473-485.	3.6	19
129	Neutron-irradiated antibody-functionalised carbon nanocapsules for targeted cancer radiotherapy. Carbon, 2020, 162, 410-422.	10.3	18
130	Recent progress in nanotechnology-based drug carriers for celastrol delivery. Biomaterials Science, 2021, 9, 6355-6380.	5.4	18
131	Development of Real-Time Transendothelial Electrical Resistance Monitoring for an In Vitro Blood-Brain Barrier System. Micromachines, 2021, 12, 37.	2.9	18
132	An Electric-Field Responsive Microsystem for Controllable Miniaturised Drug Delivery Applications. Procedia Engineering, 2011, 25, 984-987.	1.2	17
133	Injected nanoparticles: The combination of experimental systems to assess cardiovascular adverse effects. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 64-72.	4.3	17
134	Mixed micelles of lipoic acid-chitosan-poly(ethylene glycol) and distearoylphosphatidylethanolamine-poly(ethylene glycol) for tumor delivery. European Journal of Pharmaceutical Sciences, 2017, 101, 228-242.	4.0	17
135	Engineering Human Epidermal Growth Receptor 2-Targeting Hepatitis B Virus Core Nanoparticles for siRNA Delivery <i>in Vitro</i> and <i>in Vivo</i> ACS Applied Nano Materials, 2018, 1, 3269-3282.	5.0	17
136	Cavitation Induced by Janus-Like Mesoporous Silicon Nanoparticles Enhances Ultrasound Hyperthermia. Frontiers in Chemistry, 2019, 7, 393.	3.6	17
137	Cell uptake, cytoplasmic diffusion and nuclear access of a 6.5nm diameter dendrimer. International Journal of Pharmaceutics, 2007, 331, 215-219.	5.2	16
138	Yield Optimisation of Hepatitis B Virus Core Particles in E. coli Expression System for Drug Delivery Applications. Scientific Reports, 2017, 7, 43160.	3.3	16
139	Nanoparticle-Mediated <i>In Situ</i> Molecular Reprogramming of Immune Checkpoint Interactions for Cancer Immunotherapy. ACS Nano, 2021, 15, 17549-17564.	14.6	16
140	Engineered nanomedicines block the PD-1/PD-L1 axis for potentiated cancer immunotherapy. Acta Pharmacologica Sinica, 2022, 43, 2749-2758.	6.1	16
141	Films of Graphene Nanomaterials Formed by Ultrasonic Spraying of Their Stable Suspensions. Aerosol Science and Technology, 2015, 49, 45-56.	3.1	15
142	Site-Specific 111In-Radiolabeling of Dual-PEGylated Porous Silicon Nanoparticles and Their In Vivo Evaluation in Murine 4T1 Breast Cancer Model. Pharmaceutics, 2019, 11, 686.	4.5	14
143	Low-Load Metal-Assisted Catalytic Etching Produces Scalable Porosity in Si Powders. ACS Applied Materials & Interfaces, 2020, 12, 48969-48981.	8.0	14
144	Solubilisation and transformation of amphipathic lipidic dendron vesicles (dendrisomes) into mixed micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 268, 52-59.	4.7	13

#	Article	IF	CITATIONS
145	Designed inorganic porous nanovector with controlled release and MRI features for safe administration of doxorubicin. International Journal of Pharmaceutics, 2019, 554, 327-336.	5.2	12
146	Threeâ€dimensional culture of dental pulp pluripotentâ€like stem cells (DPPSCs) enhances Nanog expression and provides a serumâ€free condition for exosome isolation. FASEB BioAdvances, 2020, 2, 419-433.	2.4	12
147	Organ Biodistribution of Radiolabelled Î ³ δT Cells Following Liposomal Alendronate Administration in Different Mouse Tumour Models. Nanotheranostics, 2020, 4, 71-82.	5.2	12
148	Evaluation of cell surface reactive immuno-adjuvant in combination with immunogenic cell death inducing drug for in situ chemo-immunotherapy. Journal of Controlled Release, 2020, 322, 519-529.	9.9	12
149	Active drug targeting: Lessons learned and new things to consider. International Journal of Pharmaceutics, 2013, 454, 525-526.	5.2	11
150	Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Scientific Reports, 2017, 7, 42605.	3.3	11
151	Black Mesoporous Silicon as a Contrast Agent for LED-Based 3D Photoacoustic Tomography. ACS Applied Materials & Interfaces, 2020, 12, 5456-5461.	8.0	11
152	Stable surface functionalization of carbonized mesoporous silicon. Inorganic Chemistry Frontiers, 2020, 7, 631-641.	6.0	11
153	Controlling the Nature of Etched Si Nanostructures: High- versus Low-Load Metal-Assisted Catalytic Etching (MACE) of Si Powders. ACS Applied Materials & Interfaces, 2020, 12, 4787-4796.	8.0	11
154	Thermal dose as a universal tool to evaluate nanoparticle-induced photothermal therapy. International Journal of Pharmaceutics, 2020, 587, 119657.	5.2	11
155	Engineering red-emitting multi-functional nanocapsules for magnetic tumour targeting and imaging. Biomaterials Science, 2020, 8, 2590-2599.	5.4	11
156	Inorganic Nanomaterials for Photothermalâ€Based Cancer Theranostics. Advanced Therapeutics, 2021, 4, 2000207.	3.2	11
157	Production and stability of amorphous solid dispersions produced by a Freeze-drying method from DMSO. International Journal of Pharmaceutics, 2021, 606, 120902.	5.2	11
158	A natural protein based platform for the delivery of Temozolomide acid to glioma cells. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 297-308.	4.3	11
159	Production of Water-Soluble Few-Layer Graphene Mesosheets by Dry Milling with Hydrophobic Drug. Langmuir, 2014, 30, 14999-15008.	3.5	10
160	Nanocarriers and the delivered drug: Effect interference due to intravenous administration. European Journal of Pharmaceutical Sciences, 2014, 63, 96-102.	4.0	10
161	Optimisation of thermoporometry measurements to evaluate mesoporous organic and carbon xero-, cryo- and aerogels. Thermochimica Acta, 2015, 621, 81-89.	2.7	10
162	Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation. Annals of Biomedical Engineering, 2020, 48, 556-567.	2.5	10

#	Article	IF	CITATIONS
163	Trichinella spiralis secretes abundant unencapsulated small RNAs with potential effects on host gene expression. International Journal for Parasitology, 2020, 50, 697-705.	3.1	10
164	Green synthesis of methoxy-poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 712 Td (glycol)- <i>block</i> -p biocompatible initiator for irinotecan delivery to colon cancer <i>in vivo</i> . Biomaterials Science, 2021, 9, 795-806.	ooly(<scp>l 5.4</scp>	-lactide 10
165	Needleless administration of advanced therapies into the skin via the appendages using a hypobaric patch. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120340119.	7.1	10
166	Current Perspective of Carbon Nanotubes Application in Neurology. International Review of Neurobiology, 2016, 130, 229-263.	2.0	9
167	Spatially-resolved profiling of carbon nanotube uptake across cell lines. Nanoscale, 2017, 9, 6800-6807.	5.6	9
168	Experimental Evaluation of Radiation Response and Thermal Properties of NPs-Loaded Tissues-Mimicking Phantoms. Nanomaterials, 2022, 12, 945.	4.1	9
169	Pre-clinical non-viral vectors exploited for <i>in vivo</i> CRISPR/Cas9 gene editing: an overview. Biomaterials Science, 2022, 10, 3410-3432.	5.4	9
170	Inorganic mesoporous particles for controlled $\hat{l}\pm$ -linolenic acid delivery to stimulate GLP-1 secretion in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 132-138.	4.3	8
171	Tailored Synthesis of PEGylated Bismuth Nanoparticles for X-ray Computed Tomography and Photothermal Therapy: One-Pot, Targeted Pyrolysis, and Self-Promotion. ACS Applied Materials & Interfaces, 2020, 12, 47233-47244.	8.0	7
172	Rapid synthesis of nanostructured porous silicon carbide from biogenic silica. Journal of the American Ceramic Society, 2021, 104, 766-775.	3.8	6
173	Modulating expression of inhibitory and stimulatory immune â€ [~] checkpoints' using nanoparticulate-assisted nucleic acid delivery. EBioMedicine, 2021, 73, 103624.	6.1	6
174	Functionalization of filled radioactive multi-walled carbon nanocapsules by arylation reaction for <i>in vivo</i> delivery of radio-therapy. Journal of Materials Chemistry B, 2021, 10, 47-56.	5.8	6
175	Assessment of the Relaxation-Enhancing Properties of a Nitroxide-Based Contrast Agent TEEPO-Clc with <i>In Vivo</i> Magnetic Resonance Imaging. Contrast Media and Molecular Imaging, 2019, 2019, 1-8.	0.8	5
176	Accurate large scale modelling of graphene oxide: Ion trapping and chaotropic potential at the interface. Carbon, 2021, 174, 266-275.	10.3	5
177	Biogenic nanoporous silicon carrier improves the efficacy of buparvaquone against resistant visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2021, 15, e0009533.	3.0	5
178	Comparison between Fluorescence Imaging and Elemental Analysis to Determine Biodistribution of Inorganic Nanoparticles with Strong Light Absorption. ACS Applied Materials & Interfaces, 2021, 13, 40392-40400.	8.0	5
179	Interpreting 2D Materials Bioâ€Nano Interactions: Influence of Aggregation Status, Protein Corona, Cell Culture Media, and Cell Types. Advanced Materials Interfaces, 2021, 8, 2100251.	3.7	5
180	Multiwalled Carbon Nanotube Antennas Induce Effective Plasmid DNA Transfection of Bacterial Cells. Journal of Nanoneuroscience, 2012, 2, 56-62.	0.5	5

#	Article	IF	CITATIONS
181	Dualâ€contrast micro T enables cartilage lesion detection and tissue condition evaluation ex vivo. Equine Veterinary Journal, 2023, 55, 315-324.	1.7	5
182	Hyaluronic acid-entecavir conjugates-core/lipid-shell nanohybrids for efficient macrophage uptake and hepatotropic prospects. International Journal of Biological Macromolecules, 2022, 217, 731-747.	7.5	5
183	Mutation of arginine residues to avoid non-specific cellular uptakes for hepatitis B virus core particles. Journal of Nanobiotechnology, 2015, 13, 15.	9.1	4
184	siRNA Design and Delivery Based on Carbon Nanotubes. Methods in Molecular Biology, 2021, 2282, 181-193.	0.9	4
185	Colonic Delivery of αâ€Linolenic Acid by an Advanced Nutrient Delivery System Prolongs Glucagonâ€Like Peptideâ€L Secretion and Inhibits Food Intake in Mice. Molecular Nutrition and Food Research, 2022, 66, e2100978.	3.3	4
186	Selective toxicity of functionalised graphene oxide to patients-derived glioblastoma stem cells and minimal toxicity to non-cancerous brain tissue cells. 2D Materials, 2020, 7, 045002.	4.4	3
187	A Cyclodextrinâ€Stabilized Spermineâ€Tagged Drug Triplex that Targets Theophylline to the Lungs Selectively in Respiratory Emergency. Advanced Therapeutics, 2020, 3, 2000153.	3.2	2
188	Pharmacophore and QSAR Modeling of Neuronal Nitric Oxide Synthase Ligands and Subsequent Validation and In Silico Search for New Scaffolds. Medicinal Chemistry, 2016, 12, 371-393.	1.5	2
189	Nanomaterial Functionalization Modulates Hard Protein Corona Formation: Atomistic Simulations Applied to Graphitic Materials. Advanced Materials Interfaces, 2022, 9, 2101236.	3.7	2
190	Recent Developments in Porous Silicon Nanovectors with Various Imaging Modalities in the Framework of Theranostics. ChemMedChem, 2022, 17, .	3.2	2
191	Ritodrine inhibits neuronal nitric oxide synthase, a potential link between tocolysis and autism. Medicinal Chemistry Research, 2014, 23, 5102-5109.	2.4	1
192	Contrast Agents: Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents (Adv. Funct. Mater. 13/2014). Advanced Functional Materials, 2014, 24, 1879-1879.	14.9	1
193	European nanomedicine research, training and regulation consolidates. Nanomedicine, 2006, 1, 491-492.	3.3	0
194	Preface. International Review of Neurobiology, 2016, 130, xi-xiv.	2.0	0
195	Interpreting 2D Materials Bioâ€Nano Interactions: Influence of Aggregation Status, Protein Corona, Cell Culture Media, and Cell Types (Adv. Mater. Interfaces 17/2021). Advanced Materials Interfaces, 2021, 8, 2170094.	3.7	0
196	Carbon Nanotubes Deliver in Medicine. American Scientist, 2015, 103, 122.	0.1	0
197	Detection of Cancer-Derived Exosomes Using a Sensitive Colorimetric Aptasensor. Methods in Molecular Biology, 2022, 2504, 21-30.	0.9	0