
Todd D Gould

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7904677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of ketamine and its metabolites as antidepressants. Biochemical Pharmacology, 2022, 197, 114892.	4.4	66
2	Negative Allosteric Modulation of Gamma-Aminobutyric Acid A Receptors at α5 Subunit–Containing Benzodiazepine Sites Reverses Stress-Induced Anhedonia and Weakened Synaptic Function in Mice. Biological Psychiatry, 2022, 92, 216-226.	1.3	14
3	Hydroxynorketamine Pharmacokinetics and Antidepressant Behavioral Effects of (2 <i>,</i> 6)- and (5 <i>R</i>)-Methyl-(2 <i>R,</i> 6 <i>R</i>)-hydroxynorketamines. ACS Chemical Neuroscience, 2022, 13, 510-523.	3.5	15
4	Sex-dependent metabolism of ketamine and (<i>2R,6R</i>)-hydroxynorketamine in mice and humans. Journal of Psychopharmacology, 2022, 36, 170-182.	4.0	12
5	Comparative metabolomic analysis in plasma and cerebrospinal fluid of humans and in plasma and brain of mice following antidepressant-dose ketamine administration. Translational Psychiatry, 2022, 12, 179.	4.8	8
6	Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Molecular Psychiatry, 2022, 27, 3842-3856.	7.9	5
7	(2R,6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology, 2022, 214, 109153.	4.1	8
8	Blood-based biomarkers of antidepressant response to ketamine and esketamine: A systematic review and meta-analysis. Molecular Psychiatry, 2022, 27, 3658-3669.	7.9	12
9	Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Molecular Psychiatry, 2022, 27, 4144-4156.	7.9	15
10	Treatment of depression with ketamine does not change plasma levels of brain-derived neurotrophic factor or vascular endothelial growth factor. Journal of Affective Disorders, 2021, 280, 136-139.	4.1	14
11	Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacological Reviews, 2021, 73, 763-791.	16.0	54
12	Ketamine and the Future of Rapid-Acting Antidepressants. Annual Review of Clinical Psychology, 2021, 17, 207-231.	12.3	40
13	A comparison of the pharmacokinetics and NMDAR antagonism-associated neurotoxicity of ketamine, (2R,6R)-hydroxynorketamine and MK-801. Neurotoxicology and Teratology, 2021, 87, 106993.	2.4	15
14	(R,S)-ketamine and (2R,6R)-hydroxynorketamine differentially affect memory as a function of dosing frequency. Translational Psychiatry, 2021, 11, 583.	4.8	10
15	Classical conditioning of antidepressant placebo effects in mice. Psychopharmacology, 2020, 237, 93-102.	3.1	7
16	(2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacology, 2020, 45, 426-436.	5.4	42
17	Antidepressant Effects and Mechanisms of Group II mGlu Receptor-Specific Negative Allosteric Modulators. Neuron, 2020, 105, 1-3.	8.1	9
18	Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma. Pharmacology Biochemistry and Behavior, 2020, 196, 172973.	2.9	13

#	Article	IF	CITATIONS
19	Psychological stress enhances tumor growth and diminishes radiation response in preclinical model of lung cancer. Radiotherapy and Oncology, 2020, 146, 126-135.	0.6	21
20	A Randomized Trial of the N-Methyl-d-Aspartate Receptor Glycine Site Antagonist Prodrug 4-Chlorokynurenine in Treatment-Resistant Depression. International Journal of Neuropsychopharmacology, 2020, 23, 417-425.	2.1	42
21	Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology, 2020, 45, 1398-1404.	5.4	47
22	Alpha2B-Adrenergic Receptor Overexpression in the Brain Potentiate Air Pollution-induced Behavior and Blood Pressure Changes. Toxicological Sciences, 2019, 169, 95-107.	3.1	20
23	Sex-Specific Involvement of Estrogen Receptors in Behavioral Responses to Stress and Psychomotor Activation. Frontiers in Psychiatry, 2019, 10, 81.	2.6	17
24	(<i>2R,6R</i>)-hydroxynorketamine exerts mGlu ₂ receptor-dependent antidepressant actions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6441-6450.	7.1	112
25	Group II metabotropic glutamate receptor blockade promotes stress resilience in mice. Neuropsychopharmacology, 2019, 44, 1788-1796.	5.4	45
26	(<i>R</i>)â€Ketamine exerts antidepressant actions partly via conversion to (<i>2R,6R</i>)â€hydroxynorketamine, while causing adverse effects at subâ€anaesthetic doses. British Journal of Pharmacology, 2019, 176, 2573-2592.	5.4	61
27	Antidepressant-relevant concentrations of the ketamine metabolite (2 <i>R</i> ,6 <i>R</i>) Tj ETQq1 1 0.784314 Sciences of the United States of America, 2019, 116, 5160-5169.	rgBT /Ov 7.1	erlock 10 Tf. 120
28	Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (<i>2R,6R</i>)-hydroxynorketamine. Journal of Psychopharmacology, 2019, 33, 12-24.	4.0	41
29	Molecular Pharmacology and Neurobiology of Rapid-Acting Antidepressants. Annual Review of Pharmacology and Toxicology, 2019, 59, 213-236.	9.4	98
30	Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Molecular Psychiatry, 2019, 24, 1040-1052.	7.9	187
31	Convergent Mechanisms Underlying Rapid Antidepressant Action. CNS Drugs, 2018, 32, 197-227.	5.9	127
32	Cigarette smoke and nicotine effects on brain proinflammatory responses and behavioral and motor function in HIV-1 transgenic rats. Journal of NeuroVirology, 2018, 24, 246-253.	2.1	12
33	F102. Human Experimenter Sex Modulates Mouse Behavioral Responses to Stress and to the Antidepressant Ketamine. Biological Psychiatry, 2018, 83, S277.	1.3	6
34	Isoflurane but Not Halothane Prevents and Reverses Helpless Behavior: A Role for EEG Burst Suppression?. International Journal of Neuropsychopharmacology, 2018, 21, 777-785.	2.1	21
35	Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacological Reviews, 2018, 70, 621-660.	16.0	723
36	7B2 chaperone knockout in APP model mice results in reduced plaque burden. Scientific Reports, 2018, 8, 9813.	3.3	3

#	Article	IF	CITATIONS
37	Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology, 2018, 235, 3017-3030.	3.1	81
38	Intracellular Signaling Pathways Involved in (S)- and (R)-Ketamine Antidepressant Actions. Biological Psychiatry, 2018, 83, 2-4.	1.3	33
39	Dopamine and Stress System Modulation of Sex Differences in Decision Making. Neuropsychopharmacology, 2018, 43, 313-324.	5.4	53
40	Reduced levels of <i><scp>C</scp>acna1c</i> attenuate mesolimbic dopamine system function. Genes, Brain and Behavior, 2017, 16, 495-505.	2.2	28
41	Ketamine Mechanism of Action: Separating the Wheat from the Chaff. Neuropsychopharmacology, 2017, 42, 368-369.	5.4	21
42	Zanos et al. reply. Nature, 2017, 546, E4-E5.	27.8	29
43	Synthesis and <i>N</i> -Methyl- <scp>d</scp> -aspartate (NMDA) Receptor Activity of Ketamine Metabolites. Organic Letters, 2017, 19, 4572-4575.	4.6	64
44	Decreased Nucleus Accumbens Expression of Psychiatric Disorder Risk Gene Cacna1c Promotes Susceptibility to Social Stress. International Journal of Neuropsychopharmacology, 2017, 20, 428-433.	2.1	28
45	Reply to: Antidepressant Actions of Ketamine Versus Hydroxynorketamine. Biological Psychiatry, 2017, 81, e69-e71.	1.3	22
46	A Negative Allosteric Modulator for α5 Subunit-Containing GABA Receptors Exerts a Rapid and Persistent Antidepressant-Like Action without the Side Effects of the NMDA Receptor Antagonist Ketamine in Mice. ENeuro, 2017, 4, ENEURO.0285-16.2017.	1.9	88
47	NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533, 481-486.	27.8	1,246
48	Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens. Journal of Neurochemistry, 2016, 139, 576-585.	3.9	20
49	Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 159-170.	2.5	89
50	Irving I. Gottesman (1930–2016): the multifactorial threshold model of complex phenotypes mediated by endophenotype strategies. Genes, Brain and Behavior, 2016, 15, 775-776.	2.2	2
51	Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS–FTD-linked <i>UBQLN2</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7580-E7589.	7.1	77
52	Going longitudinal in biological psychiatric research: All things considered. Neuroscience Research, 2016, 102, 1-3.	1.9	1
53	Sexâ€dependent modulation of ageâ€related cognitive decline by the Lâ€type calcium channel gene <i>Cacna1c</i> (Ca _v 1.2). European Journal of Neuroscience, 2015, 42, 2499-2507.	2.6	26
54	The prodrug DHED selectively delivers 17β-estradiol to the brain for treating estrogen-responsive disorders. Science Translational Medicine, 2015, 7, 297ra113.	12.4	51

#	Article	IF	CITATIONS
55	Effect of lithium on behavioral disinhibition induced by electrolytic lesion of the median raphe nucleus. Psychopharmacology, 2015, 232, 1441-1450.	3.1	8
56	Effects of environmental stress following myocardial infarction on behavioral measures and heart failure progression: The influence of isolated and group housing conditions. Physiology and Behavior, 2015, 152, 168-174.	2.1	2
57	The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/Clycine _B -Site Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 76-85.	2.5	96
58	Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacology Biochemistry and Behavior, 2014, 123, 3-16.	2.9	95
59	Immune status influences fear and anxiety responses in mice after acute stress exposure. Brain, Behavior, and Immunity, 2014, 38, 192-201.	4.1	31
60	Ubiquilin-1 Overexpression Increases the Lifespan and Delays Accumulation of Huntingtin Aggregates in the R6/2 Mouse Model of Huntington's Disease. PLoS ONE, 2014, 9, e87513.	2.5	33
61	Differential antidepressant-like response to lithium treatment between mouse strains: effects of sex, maternal care, and mixed genetic background. Psychopharmacology, 2013, 228, 411-418.	3.1	13
62	Lithium, but not Valproate, Reduces Impulsive Choice in the Delay-Discounting Task in Mice. Neuropsychopharmacology, 2013, 38, 1937-1944.	5.4	31
63	Differential Lithium Efficacy in Reducing Suicidal Behaviors Compared With Suicidal Thoughts. American Journal of Psychiatry, 2012, 169, 98-99.	7.2	3
64	CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Progress in Neurobiology, 2012, 99, 1-14.	5.7	236
65	Affect-Related Behaviors in Mice Selectively Bred for High and Low Voluntary Alcohol Consumption. Behavior Genetics, 2012, 42, 313-322.	2.1	16
66	Advances in multidisciplinary and cross-species approaches to examine the neurobiology of psychiatric disorders. European Neuropsychopharmacology, 2011, 21, 532-544.	0.7	31
67	Antidepressant-like responses to lithium in genetically diverse mouse strains. Genes, Brain and Behavior, 2011, 10, 434-443.	2.2	66
68	The Mouse Forced Swim Test. Journal of Visualized Experiments, 2011, , e3638.	0.3	316
69	Shock-induced aggression in mice is modified by lithium. Pharmacology Biochemistry and Behavior, 2010, 94, 380-386.	2.9	33
70	Mood Disorder Susceptibility Gene CACNA1C Modifies Mood-Related Behaviors in Mice and Interacts with Sex to Influence Behavior in Mice and Diagnosis in Humans. Biological Psychiatry, 2010, 68, 801-810.	1.3	157
71	Allergic rhinitis induces anxiety-like behavior and altered social interaction in rodents. Brain, Behavior, and Immunity, 2009, 23, 784-793.	4.1	96
72	Lithium's Antisuicidal Efficacy: Elucidation of Neurobiological Targets Using Endophenotype Strategies. Annual Review of Pharmacology and Toxicology, 2009, 49, 175-198.	9.4	94

#	Article	IF	CITATIONS
73	Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology, 2008, 54, 577-587.	4.1	98
74	Generation and behavioral characterization of β-catenin forebrain-specific conditional knock-out mice. Behavioural Brain Research, 2008, 189, 117-125.	2.2	76
75	Strain Differences in Lithium Attenuation of d-Amphetamine-Induced Hyperlocomotion: A Mouse Model for the Genetics of Clinical Response to Lithium. Neuropsychopharmacology, 2007, 32, 1321-1333.	5.4	113
76	Performance on a Virtual Reality Spatial Memory Navigation Task in Depressed Patients. American Journal of Psychiatry, 2007, 164, 516-519.	7.2	98
77	β-Catenin Overexpression in the Mouse Brain Phenocopies Lithium-Sensitive Behaviors. Neuropsychopharmacology, 2007, 32, 2173-2183.	5.4	129
78	Animal models of bipolar disorder and mood stabilizer efficacy: A critical need for improvement. Neuroscience and Biobehavioral Reviews, 2007, 31, 825-831.	6.1	109
79	The behavioral actions of lithium in rodent models: Leads to develop novel therapeutics. Neuroscience and Biobehavioral Reviews, 2007, 31, 932-962.	6.1	115
80	Targeting Neurotrophic Signal Transduction Pathways in the Treatment of Mood Disorders. Current Signal Transduction Therapy, 2007, 2, 101-110.	0.5	2
81	Toward Constructing an Endophenotype Strategy for Bipolar Disorders. Biological Psychiatry, 2006, 60, 93-105.	1.3	402
82	Targeting glycogen synthase kinase-3 as an approach to develop novel mood-stabilising medications. Expert Opinion on Therapeutic Targets, 2006, 10, 377-392.	3.4	34
83	Targeting Glycogen Synthase Kinase-3 in the CNS: Implications for the Development of New Treatments for Mood Disorders. Current Drug Targets, 2006, 7, 1399-1409.	2.1	118
84	Mood Stabilizers Target Cellular Plasticity and Resilience Cascades: Implications for the Development of Novel Therapeutics. Molecular Neurobiology, 2005, 32, 173-202.	4.0	139
85	DARPP-32: A molecular switch at the nexus of reward pathway plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 253-254.	7.1	50
86	Glycogen Synthase Kinase-3: a Putative Molecular Target for Lithium Mimetic Drugs. Neuropsychopharmacology, 2005, 30, 1223-1237.	5.4	339
87	Mood Stabilizer Valproate Promotes ERK Pathway-Dependent Cortical Neuronal Growth and Neurogenesis. Journal of Neuroscience, 2004, 24, 6590-6599.	3.6	371
88	In Vivo Evidence in the Brain for Lithium Inhibition of Glycogen Synthase Kinase-3. Neuropsychopharmacology, 2004, 29, 32-38.	5.4	205
89	Neurotrophic signaling cascades are major long-term targets for lithium: clinical implications. Clinical Neuroscience Research, 2004, 4, 137-153.	0.8	10
90	GSK-3 and neurotrophic signaling: novel targets underlying the pathophysiology and treatment of mood disorders?. Drug Discovery Today Disease Mechanisms, 2004, 1, 419-428.	0.8	8

#	Article	IF	CITATIONS
91	AR-A014418, a selective CSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. International Journal of Neuropsychopharmacology, 2004, 7, 387-390.	2.1	290
92	MOLECULAR EFFECTS of lithium. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 259-272.	3.4	189
93	The Molecular Medicine Revolution and Psychiatry: Bridging the Gap Between Basic Neuroscience Research and Clinical Psychiatry. Journal of Clinical Psychiatry, 2004, 65, 598-604.	2.2	48
94	Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. Journal of Clinical Psychiatry, 2004, 65, 10-21.	2.2	194
95	The Endophenotype Concept in Psychiatry: Etymology and Strategic Intentions. American Journal of Psychiatry, 2003, 160, 636-645.	7.2	5,054
96	Post-mortem Interval Effects on the Phosphorylation of Signaling Proteins. Neuropsychopharmacology, 2003, 28, 1017-1025.	5.4	83
97	The Role of the Extracellular Signal-Regulated Kinase Signaling Pathway in Mood Modulation. Journal of Neuroscience, 2003, 23, 7311-7316.	3.6	452
98	Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice. Pharmacological Research, 2003, 48, 49-53.	7.1	46
99	The Wnt Signaling Pathway in Bipolar Disorder. Neuroscientist, 2002, 8, 497-511.	3.5	155
100	Signaling networks in the pathophysiology and treatment of mood disorders. Journal of Psychosomatic Research, 2002, 53, 687-697.	2.6	119
101	Mood stabilizer psychopharmacology. Clinical Neuroscience Research, 2002, 2, 193-212.	0.8	59
102	Altered performance on an ocular fixation task in attention-deficit/hyperactivity disorder. Biological Psychiatry, 2001, 50, 633-635.	1.3	68