Joël Brugger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7904090/publications.pdf

Version: 2024-02-01

202 papers 8,137 citations

51 h-index 79 g-index

212 all docs

212 docs citations

212 times ranked

5702 citing authors

#	Article	IF	CITATIONS
1	Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chemical Geology, 2016, 439, 13-42.	3.3	306
2	Mechanisms of gold biomineralization in the bacterium <i>Cupriavidus metallidurans</i> Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17757-17762.	7.1	283
3	Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience, 2016, 5, 21.	6.4	204
4	Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite. Geochimica Et Cosmochimica Acta, 2009, 73, 1945-1969.	3.9	193
5	A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?. Chemical Geology, 2016, 447, 219-253.	3.3	177
6	A spectrophotometric study of aqueous Au(III) halide–hydroxide complexes at 25–80°C. Geochimica Et Cosmochimica Acta, 2009, 73, 3359-3380.	3.9	173
7	Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt.) Tj ETQq1 1 Petrology, 2000, 139, 251-264.	l 0.784314 3.1	4 rgBT /Ov <mark>er</mark> 140
8	Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geology, 2008, 36, 815.	4.4	139
9	Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation. Geology, 2010, 38, 843-846.	4.4	137
10	Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study. Geochimica Et Cosmochimica Acta, 2011, 75, 5423-5443.	3.9	137
11	Oxidation state of europium in scheelite: Tracking fluid–rock interaction in gold deposits. Chemical Geology, 2008, 257, 26-33.	3.3	133
12	Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chemical Geology, 2015, 395, 154-164.	3.3	121
13	Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35–440°C and 600bar: An in-situ XAS study. Geochimica Et Cosmochimica Acta, 2011, 75, 1227-1248.	3.9	119
14	Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochimica Et Cosmochimica Acta, 2013, 120, 298-325.	3.9	117
15	Textural and compositional complexities resulting from coupled dissolution–reprecipitation reactions in geomaterials. Earth-Science Reviews, 2015, 150, 628-651.	9.1	115
16	Determination of the oxidation state of Cu in substituted Cu-In-Fe-bearing sphalerite via Â-XANES spectroscopy. American Mineralogist, 2012, 97, 476-479.	1.9	114
17	In-situ X-ray absorption study of Iron(II) speciation in brines up to supercritical conditions. Chemical Geology, 2009, 264, 295-310.	3.3	107
18	â€~Invisible gold' in bismuth chalcogenides. Geochimica Et Cosmochimica Acta, 2009, 73, 1970-1999.	3.9	106

#	Article	IF	Citations
19	UV–Vis spectrophotometric and XAFS studies of ferric chloride complexes in hyper-saline LiCl solutions at 25–90°C. Chemical Geology, 2006, 231, 326-349.	3.3	105
20	Fate of gold and base metals during metamorphic devolatilization of a pelite. Geochimica Et Cosmochimica Acta, 2015, 171, 338-352.	3.9	97
21	Complexation of metal ions in brines: application of electronic spectroscopy in the study of the Cu(II)-LiCl-H 2 O system between 25 and 90°C. Geochimica Et Cosmochimica Acta, 2001, 65, 2691-2708.	3.9	92
22	Distribution and Substitution Mechanism of Ge in a Ge-(Fe)-Bearing Sphalerite. Minerals (Basel,) Tj ETQq0 0 0 rg	BT LOverlo	ock 10 Tf 50 6
23	Origins of Nd–Sr–Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia. Chemical Geology, 2002, 182, 203-225.	3.3	87
24	Zinc complexation in chloride-rich hydrothermal fluids (25–600 °C): A thermodynamic model derived from ab initio molecular dynamics. Geochimica Et Cosmochimica Acta, 2015, 150, 265-284.	3.9	85
25	Arsenic evolution as a tool for understanding formation of pyritic gold ores. Geology, 2019, 47, 335-338.	4.4	83
26	Influence of geogenic factors on microbial communities in metallogenic Australian soils. ISME Journal, 2012, 6, 2107-2118.	9.8	79
27	Ab initio molecular dynamics simulation and free energy exploration of copper(I) complexation by chloride and bisulfide in hydrothermal fluids. Geochimica Et Cosmochimica Acta, 2013, 102, 45-64.	3.9	79
28	An experimental study of copper(I)-chloride and copper(I)-acetate complexing in hydrothermal solutions between 50°C and 250°C and vapor-saturated pressure. Geochimica Et Cosmochimica Acta, 2001, 65, 2937-2948.	3.9	71
29	Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 ÂC: An experimental study of reaction textures and mechanisms. American Mineralogist, 2011, 96, 1878-1893.	1.9	71
30	Kinetics and Mechanism of Hydrolysis of a Model Phosphate Diester by $[Cu(Me3tacn)(OH2)2]2+(Me3tacn = 1,4,7-Trimethyl-1,4,7-triazacyclononane)$. Inorganic Chemistry, 2005, 44, 941-950.	4.0	70
31	Bismuth speciation in hydrothermal fluids: An X-ray absorption spectroscopy and solubility study. Geochimica Et Cosmochimica Acta, 2013, 101, 156-172.	3.9	70
32	Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chemical Geology, 2017, 463, 29-49.	3.3	70
33	An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300°C. Geochimica Et Cosmochimica Acta, 2010, 74, 5610-5630.	3.9	69
34	Speciation of nickel (II) chloride complexes in hydrothermal fluids: In situ XAS study. Chemical Geology, 2012, 334, 345-363.	3.3	69
35	Metal complexation and ion hydration in low density hydrothermal fluids: Ab initio molecular dynamics simulation of Cu(I) and Au(I) in chloride solutions (25–1000°C, 1–5000bar). Geochimica Et Cosmochimica Acta, 2014, 131, 196-212.	3.9	69
36	Synthesis, Structure, and DNA Cleavage Properties of Copper(II) Complexes of 1,4,7-Triazacyclononane Ligands Featuring Pairs of Guanidine Pendants. Inorganic Chemistry, 2011, 50, 621-635.	4.0	65

#	Article	IF	Citations
37	Gold transport in hydrothermal fluids: Competition among the Clâ´', Brâ´', HSâ´' and NH3(aq) ligands. Chemical Geology, 2014, 376, 11-19.	3.3	65
38	Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold. American Mineralogist, 2009, 94, 1541-1555.	1.9	64
39	Three-Dimensional Ordered Arrays of Zeolite Nanocrystals with Uniform Size and Orientation by a Pseudomorphic Coupled Dissolutionâ`Reprecipitation Replacement Route. Crystal Growth and Design, 2009, 9, 4902-4906.	3.0	64
40	Novel Route To Synthesize Complex Metal Sulfides: Hydrothermal Coupled Dissolutionâ Reprecipitation Replacement Reactions. Chemistry of Materials, 2008, 20, 2809-2817.	6.7	63
41	A spectrophotometric study of aqueous copper(I)–chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochimica Et Cosmochimica Acta, 2002, 66, 3615-3633.	3.9	62
42	An active amagmatic hydrothermal system: The Paralana hot springs, Northern Flinders Ranges, South Australia. Chemical Geology, 2005, 222, 35-64.	3.3	62
43	Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica Et Cosmochimica Acta, 2013, 100, 1-10.	3.9	60
44	Probing ore deposits formation: New insights and challenges from synchrotron and neutron studies. Radiation Physics and Chemistry, 2010, 79, 151-161.	2.8	58
45	Transformation of pentlandite to violarite under mild hydrothermal conditions. American Mineralogist, 2006, 91, 706-709.	1.9	56
46	Speciation mapping of environmental samples using XANES imaging. Environmental Chemistry, 2014, 11 , 341 .	1.5	55
47	Palladium complexation in chloride- and bisulfide-rich fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy. Geochimica Et Cosmochimica Acta, 2015, 161, 128-145.	3.9	55
48	Phosphodiester Cleavage Properties of Copper(II) Complexes of 1,4,7-Triazacyclononane Ligands Bearing Single Alkyl Guanidine Pendants. Inorganic Chemistry, 2012, 51, 939-953.	4.0	54
49	Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions. Minerals (Basel, Switzerland), 2013, 3, 367-394.	2.0	54
50	An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600bar. Geochimica Et Cosmochimica Acta, 2012, 92, 292-307.	3.9	53
51	Analysis of Gold(I/III)-Complexes by HPLC-ICP-MS Demonstrates Gold(III) Stability in Surface Waters. Environmental Science & E	10.0	53
52	Love is in the Earth: A review of tellurium (bio)geochemistry in surface environments. Earth-Science Reviews, 2020, 204, 103150.	9.1	53
53	Mechanism and kinetics of hydrothermal replacement of magnetite by hematite. Geoscience Frontiers, 2019, 10, 29-41.	8.4	51
54	NANO- TO MICRON-SCALE PARTICULATE GOLD HOSTED BY MAGNETITE: A PRODUCT OF GOLD SCAVENGING BY BISMUTH MELTS. Economic Geology, 2017, 112, 993-1010.	3.8	50

#	Article	IF	Citations
55	Deriving formation constants for aqueous metal complexes from XANES spectra: Zn2+ and Fe2+ chloride complexes in hypersaline solutions. American Mineralogist, 2007, 92, 761-770.	1.9	49
56	Dissolution-reprecipitation vs. solid-state diffusion: Mechanism of mineral transformations in sylvanite, (AuAg)2Te4, under hydrothermal conditions. American Mineralogist, 2013, 98, 19-32.	1.9	49
57	Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat Au surfaces. Chemical Geology, 2009, 265, 313-320.	3.3	48
58	Biological role in the transformation of platinum-group mineralÂgrains. Nature Geoscience, 2016, 9, 294-298.	12.9	46
59	Characterisation of a rare earth element- and zirconium-bearing ion-adsorption clay deposit in Madagascar. Chemical Geology, 2019, 522, 93-107.	3.3	46
60	The role of fluorine in hydrothermal mobilization and transportation of Fe, U and REE and the formation of IOCG deposits. Chemical Geology, 2019, 504, 158-176.	3.3	46
61	The replacement of chalcopyrite by bornite under hydrothermal conditions. American Mineralogist, 2014, 99, 2389-2397.	1.9	44
62	Evidence of sub-arc mantle oxidation by sulphur and carbon. Geochemical Perspectives Letters, 2017, , 124-132.	5.0	44
63	The solubility of nantokite (CuCl(s)) and Cu speciation in low-density fluids near the critical isochore: An in-situ XAS study. Geochimica Et Cosmochimica Acta, 2008, 72, 4094-4106.	3.9	43
64	Revisiting the hydrothermal geochemistry of europium(II/III) in light of new in-situ XAS spectroscopy results. Chemical Geology, 2017, 459, 61-74.	3.3	43
65	Spriggite, Pb ₃ [(UO ₂) ₆ O ₈ (OH) ₂] (H ₂ O) ₃ , a new mineral with β-U ₃ O ₈ –type sheets: Description and crystal structure. American Mineralogist, 2004, 89, 339-347.	1.9	42
66	Proteomic responses to gold(<scp>iii</scp>)-toxicity in the bacterium Cupriavidus metallidurans CH34. Metallomics, 2016, 8, 1204-1216.	2.4	42
67	Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy. American Mineralogist, 2010, 95, 921-932.	1.9	41
68	Fluids in geological processes $\hat{a}\in$ " The present state and future outlook. Journal of Geochemical Exploration, 2010, 106, 1-7.	3.2	40
69	Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments?. Chemical Geology, 2013, 343, 99-110.	3.3	40
70	Complexation of gold in S3â^'-rich hydrothermal fluids: Evidence from ab-initio molecular dynamics simulations. Chemical Geology, 2013, 347, 34-42.	3.3	40
71	Characterization of uranium redox state in organic-rich Eocene sediments. Chemosphere, 2018, 194, 602-613.	8.2	40
72	Experimental study of the formation of chalcopyrite and bornite via the sulfidation of hematite: Mineral replacements with a large volume increase. American Mineralogist, 2014, 99, 343-354.	1.9	39

#	Article	IF	Citations
73	In situ recovery of uranium — the microbial influence. Hydrometallurgy, 2014, 150, 236-244.	4.3	39
74	Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle. Geochimica Et Cosmochimica Acta, 2020, 282, 113-132.	3.9	39
75	Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature. Geochimica Et Cosmochimica Acta, 2017, 196, 144-159.	3.9	38
76	BeerOz, a set of Matlab routines for the quantitative interpretation of spectrophotometric measurements of metal speciation in solution. Computers and Geosciences, 2007, 33, 248-261.	4.2	37
77	The aqueous chemistry of polonium (Po) in environmental and anthropogenic processes. Journal of Hazardous Materials, 2019, 380, 120725.	12.4	37
78	The role of Te(IV) and Bi(III) chloride complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study. Chemical Geology, 2016, 425, 37-51.	3.3	35
79	Carbonate complexation enhances hydrothermal transport of rare earth elements in alkaline fluids. Nature Communications, 2022, 13, 1456.	12.8	35
80	Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H–O–S–Pb isotopes. Ore Geology Reviews, 2017, 90, 847-862.	2.7	34
81	Forming sulfate- and REE-rich fluids in the presence of quartz. Geology, 2020, 48, 145-148.	4.4	34
82	Copper(i) speciation in mixed thiosulfate-chloride and ammonia-chloride solutions: XAS and UV-Visible spectroscopic studies. RSC Advances, 2011, 1, 1554.	3.6	33
83	Speciation and thermodynamic properties of manganese(II) chloride complexes in hydrothermal fluids: In situ XAS study. Geochimica Et Cosmochimica Acta, 2014, 129, 77-95.	3.9	33
84	Synergistic Toxicity of Copper and Gold Compounds in Cupriavidus metallidurans. Applied and Environmental Microbiology, 2017, 83, .	3.1	33
85	Uranium Transport in F-Cl-Bearing Fluids and Hydrothermal Upgrading of U-Cu Ores in IOCG Deposits. Geofluids, 2018, 2018, 1-22.	0.7	33
86	Ore Petrography Using Megapixel X-Ray Imaging: Rapid Insights into Element Distribution and Mobilization in Complex Pt and U-Ge-Cu Ores. Economic Geology, 2016, 111, 487-501.	3.8	32
87	Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia: "Dehydrated schoepite" is a mineral after all. American Mineralogist, 2011, 96, 229-240.	1.9	30
88	The future of biotechnology for gold exploration and processing. Minerals Engineering, 2012, 32, 45-53.	4.3	30
89	The dissociation mechanism and thermodynamic properties of HCl(aq) in hydrothermal fluids (to) Tj ETQq1 1 0.7 226, 84-106.	84314 rgE 3.9	3T /Overlock 29
90	Distribution and speciation of gold in biogenic and abiogenic calcium carbonates – Implications for the formation of gold anomalous calcrete. Geochimica Et Cosmochimica Acta, 2011, 75, 1942-1956.	3.9	28

#	Article	IF	CITATIONS
91	Speciation and thermodynamic properties of zinc in sulfur-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy. Geochimica Et Cosmochimica Acta, 2016, 179, 32-52.	3.9	27
92	The role of Pb(II) complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study. Chemical Geology, 2018, 502, 88-106.	3.3	27
93	Scheelite-powellite and paraniite-(Y) from the Fe-Mn deposit at Fianel, Eastern Swiss Alps. American Mineralogist, 1998, 83, 1100-1110.	1.9	26
94	A Novel Route for the Synthesis of Mesoporous and Low-Thermal Stability Materials by Coupled Dissolution-Reprecipitation Reactions: Mimicking Hydrothermal Mineral Formation. Chimia, 2010, 64, 693.	0.6	26
95	Exsolution of chalcopyrite from bornite-digenite solid solution: an example of a fluid-driven back-replacement reaction. Mineralium Deposita, 2018, 53, 903-908.	4.1	26
96	Xocolatlite, Ca2Mn24+Te2O12{middle dot}H2O, a new tellurate related to kuranakhite: Description and measurement of Te oxidation state by XANES spectroscopy. American Mineralogist, 2008, 93, 1911-1920.	1.9	25
97	Quantitative Cathodoluminescence Mapping with Application to a Kalgoorlie Scheelite. Microscopy and Microanalysis, 2009, 15, 222-230.	0.4	25
98	Structure and Thermal Stability of Bi(III) Oxy-Clusters in Aqueous Solutions. Journal of Solution Chemistry, 2014, 43, 314-325.	1.2	25
99	The crystal structure of vergasovaite Cu3O[(Mo,S)O4SO4]9 and its relation to synthetic Cu3O[MoO4]2. European Journal of Mineralogy, 1999, 11, 101-110.	1.3	25
100	Genesis and Preservation of a Uranium-Rich Paleozoic Epithermal System with a Surface Expression (Northern Flinders Ranges, South Australia): Radiogenic Heat Driving Regional Hydrothermal Circulation over Geological Timescales. Astrobiology, 2011, 11, 499-508.	3.0	24
101	XAS evidence for the stability of polytellurides in hydrothermal fluids up to 599 ÂC, 800 bar. American Mineralogist, 2012, 97, 1519-1522.	1.9	24
102	An XAS study of speciation and thermodynamic properties of aqueous zinc bromide complexes at 25–150°C. Chemical Geology, 2012, 298-299, 57-69.	3.3	24
103	Pseudojohannite from Jachymov, Musonoi, and La Creusaz: A new member of the zippeite-group. American Mineralogist, 2006, 91, 929-936.	1.9	23
104	Applying the Midas touch: Differing toxicity of mobile gold and platinum complexes drives biomineralization in the bacterium Cupriavidus metallidurans. Chemical Geology, 2016, 438, 103-111.	3.3	23
105	Fluid-Enhanced Coarsening of Mineral Microstructures in Hydrothermally Synthesized Bornite–Digenite Solid Solution. ACS Earth and Space Chemistry, 2017, 1, 465-474.	2.7	23
106	Crude oils as ore fluids: An experimental in-situ XAS study of gold partitioning between brine and organic fluid from 25 to 250†°C. Geochimica Et Cosmochimica Acta, 2019, 244, 352-365.	3.9	23
107	Understanding the mechanism and kinetics of pentlandite oxidation in extractive pyrometallurgy of nickel. Minerals Engineering, 2012, 27-28, 11-19.	4.3	22
108	Uranium scavenging during mineral replacement reactions. American Mineralogist, 2015, 100, 1728-1735.	1.9	22

#	Article	IF	Citations
109	Colloidal gold in sulphur and citrate-bearing hydrothermal fluids: An experimental study. Ore Geology Reviews, 2019, 114, 103142.	2.7	22
110	The role of pyrrhotite (Fe7S8) and the sample texture in the hydrothermal transformation of pentlandite ((Fe,Ni)9S8) to violarite ((Ni,Fe)3S4). Reaction Kinetics and Catalysis Letters, 2007, 92, 257-266.	0.6	21
111	A novel pre-treatment of calaverite by hydrothermal mineral replacement reactions. Minerals Engineering, 2010, 23, 451-453.	4.3	21
112	Oxidation state and coordination environment of Pb in U-bearing minerals. Geochimica Et Cosmochimica Acta, 2019, 265, 109-131.	3.9	21
113	Description, crystal structure, and paragenesis of krettnichite, PbMn3+2(VO4)2(OH)2, the Mn3+ analogue of mounanaite. European Journal of Mineralogy, 2001, 13, 145-158.	1.3	20
114	Cleusonite, $(Pb,Sr)(U4+,U6+)(Fe2+,Zn)2(Ti,Fe2+,Fe3+)18(O,OH)38$, a new mineral species of the crichtonite group from the western Swiss Alps. European Journal of Mineralogy, 2006, 17, 933-942.	1.3	20
115	Microporous gold: Comparison of textures from Nature and experiments. American Mineralogist, 2014, 99, 1171-1174.	1.9	20
116	Recrystallization of Manganite (\hat{l}^3 -MnOOH) and Implications for Trace Element Cycling. Environmental Science & Element Cycling, 2018, 52, 1311-1319.	10.0	19
117	Trace element catalyses mineral replacement reactions and facilitates ore formation. Nature Communications, 2021, 12, 1388.	12.8	19
118	Characterization of porosity in sulfide ore minerals: A USANS/SANS study. American Mineralogist, 2014, 99, 2398-2404.	1.9	18
119	Effect of manganese oxide minerals and complexes on gold mobilization and speciation. Chemical Geology, 2015, 407-408, 10-20.	3.3	18
120	Uranyl speciation in sulfate-bearing hydrothermal solutions up to 250â€Â°C. Geochimica Et Cosmochimica Acta, 2019, 267, 75-91.	3.9	18
121	Effect of physical and biogeochemical factors on placer gold transformation in mountainous landscapes of Switzerland. Gondwana Research, 2019, 66, 77-92.	6.0	18
122	Yttrium complexation and hydration in chloride-rich hydrothermal fluids: A combined ab initio molecular dynamics and in situ X-ray absorption spectroscopy study. Geochimica Et Cosmochimica Acta, 2020, 281, 168-189.	3.9	18
123	A new mode of mineral replacement reactions involving the synergy between fluid-induced solid-state diffusion and dissolution-reprecipitation: A case study of the replacement of bornite by copper sulfides. Geochimica Et Cosmochimica Acta, 2022, 330, 165-190.	3.9	18
124	A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass. Mineralogical Magazine, 2011, 75, 279-287.	1.4	17
125	Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12. American Mineralogist, 2012, 97, 1796-1803.	1.9	17
126	Gold solubility in alkaline and ammonia-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations. Geochimica Et Cosmochimica Acta, 2020, 291, 62-78.	3.9	17

#	Article	IF	CITATIONS
127	Mineralogy and crystal structure of bouazzerite from Bou Azzer, Anti-Atlas, Morocco: Bi-As-Fe nanoclusters containing Fe3+ in trigonal prismatic coordination. American Mineralogist, 2007, 92, 1630-1639.	1.9	16
128	Protracted fluid–rock interaction in the Mesoarchaean and implication for gold mineralization: Example from the Warrawoona syncline (Pilbara, Western Australia). Earth and Planetary Science Letters, 2008, 272, 639-655.	4.4	16
129	REE-, Sr-, Ca-aluminum-phosphate-sulfate minerals of the alunite supergroup and their role as hosts for radionuclides. American Mineralogist, 2019, 104, 1806-1819.	1.9	16
130	Nutrient Supply to Planetary Biospheres From Anoxic Weathering of Mafic Oceanic Crust. Geophysical Research Letters, 2021, 48, e2021GL094442.	4.0	16
131	The Carbonatation of Anhydrite: Kinetics and Reaction Pathways. ACS Earth and Space Chemistry, 2017, 1, 89-100.	2.7	15
132	The nature of Pu-bearing particles from the Maralinga nuclear testing site, Australia. Scientific Reports, 2021, 11, 10698.	3.3	15
133	Scheuchzerite, Na(Mn,Mg)9[VSi9O28(OH)](OH)3, a new single-chain silicate. American Mineralogist, 2006, 91, 937-943.	1.9	14
134	Mechanism of mineral transformations in krennerite, Au3AgTe8, under hydrothermal conditions. American Mineralogist, 2013, 98, 2086-2095.	1.9	14
135	A Whole-Cell Biosensor for the Detection of Gold. PLoS ONE, 2013, 8, e69292.	2.5	14
136	Surface transformations of platinum grains from Fifield, New South Wales, Australia. American Mineralogist, 2015, 100, 1236-1243.	1.9	14
137	Garnet peridotites reveal spatial and temporal changes in the oxidation potential of subduction. Scientific Reports, 2018, 8, 16411.	3.3	14
138	Smoking gun for thallium geochemistry in volcanic arcs: Nataliyamalikite, TII, a new thallium mineral from an active fumarole at Avacha Volcano, Kamchatka Peninsula, Russia. American Mineralogist, 2017, 102, 1736-1746.	1.9	13
139	Rapid immobilisation of U(VI) by Eucalyptus bark: Adsorption without reduction. Applied Geochemistry, 2018, 96, 1-10.	3.0	13
140	Zinc transport in hydrothermal fluids: On the roles of pressure and sulfur vs. chlorine complexing. American Mineralogist, 2019, 104, 158-161.	1.9	13
141	Spectroscopic, Raman, EMPA, Micro-XRF and Micro-XANES Analyses of Sulphur Concentration and Oxidation State of Natural Apatite Crystals. Crystals, 2020, 10, 1032.	2.2	13
142	The mechanism and kinetics of the transformation from marcasite to pyrite: in situ and ex situ experiments and geological implications. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	13
143	Lead (Pb) sorption and co-precipitation on natural sulfide, sulfate and oxide minerals under environmental conditions. Minerals Engineering, 2021, 163, 106801.	4.3	13
144	Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System. PLoS ONE, 2015, 10, e0119805.	2.5	13

#	Article	IF	CITATIONS
145	A thermosyphon-driven hydrothermal flow-through cell forin situand time-resolved neutron diffraction studies. Journal of Applied Crystallography, 2010, 43, 511-519.	4.5	12
146	Anatase nanoparticles on supergene platinum–palladium aggregates from Brazil: Titanium mobility in natural waters. Chemical Geology, 2012, 334, 182-188.	3.3	12
147	GraÂianite, MnBi2S4, a new mineral from the Baia Bihor skarn, Romania. American Mineralogist, 2014, 99, 1163-1170.	1.9	12
148	Hydration Is the Key for Gold Transport in CO2â€"HClâ€"H2O Vapor. ACS Earth and Space Chemistry, 2017, 1, 368-375.	2.7	12
149	Revisiting hydrocarbon phase mobilization of Au in the Au–Hg McLaughlin Mine, Geysers/Clear Lake area, California. Ore Geology Reviews, 2020, 117, 103218.	2.7	12
150	The role of sulfur in molybdenum transport in hydrothermal fluids: Insight from in situ synchrotron XAS experiments and molecular dynamics simulations. Geochimica Et Cosmochimica Acta, 2020, 290, 162-179.	3.9	12
151	Selective impurity removal and Cu upgrading of copper flotation concentrate by a spontaneously oxidative H2SO4 leaching process. Hydrometallurgy, 2020, 195, 105411.	4.3	12
152	Insights into salty metamorphic fluid evolution from scapolite in the Trans-North China Orogen: Implication for ore genesis. Geochimica Et Cosmochimica Acta, 2021, 293, 256-276.	3.9	12
153	Early Fimiston and late Oroya Au–Te ore, Paringa South mine, Golden Mile, Kalgoorlie: 4. Mineralogical and thermodynamic constraints on gold deposition by magmatic fluids at 420–300°C and 300ÁMPa. Mineralium Deposita, 2020, 55, 767-796.	4.1	12
154	Coupled reactive flow and dissolution with changing reactive surface and porosity. Chemical Engineering Science, 2019, 206, 289-304.	3.8	11
155	Coupling between mineral replacement reactions and co-precipitation of trace elements: An example from the giant Olympic Dam deposit. Ore Geology Reviews, 2020, 117, 103267.	2.7	11
156	A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations. Physica B: Condensed Matter, 2006, 385-386, 942-945.	2.7	10
157	Species fine structure of transition metal Cu(II) in aqueous chloride-bearing solutions: Insights from X-ray absorption spectroscopy and ab initio XANES calculations. Journal of Molecular Liquids, 2017, 230, 200-208.	4.9	10
158	Unravelling the formation histories of placer gold and platinum-group mineral particles from Corrego Bom Successo, Brazil: A window into noble metal cycling. Gondwana Research, 2019, 76, 246-259.	6.0	10
159	Oxidative Dissolution of Sulfide Minerals in Single and Mixed Sulfide Systems under Simulated Acid and Metalliferous Drainage Conditions. Environmental Science & Environmental Science & 2021, 55, 2369-2380.	10.0	10
160	Selective radionuclide co-sorption onto natural minerals in environmental and anthropogenic conditions. Journal of Hazardous Materials, 2021, 409, 124989.	12.4	10
161	Anatomy of a complex mineral replacement reaction: Role of aqueous redox, mineral nucleation, and ion transport properties revealed by an in-situ study of the replacement of chalcopyrite by copper sulfides. Chemical Geology, 2021, 581, 120390.	3.3	10
162	Crystal chemistry of zemannite-type structures: I. A re-examination of zemannite from Moctezuma, Mexico. European Journal of Mineralogy, 2019, 31, 519-527.	1.3	10

#	Article	IF	CITATIONS
163	Description and crystal structure of cabalzarite Ca(Mg,Al,Fe) ₂ (H ₂ O,OH) ₂ , a new mineral of the tsumcorite group. American Mineralogist, 2000, 85, 1307-1314.	1.9	9
164	Description and crystal structure of maghrebite, MgAl2(AsO4)2(OH)28H2O, from Aghbar, Anti-Atlas, Morocco: first arsenate in the laueite mineral group. European Journal of Mineralogy, 2012, 24, 717-726.	1.3	9
165	Effect of Solvent Activity on Solute Association: The Formation of Aqueous Nickel(II) Chloride Complexes Studied by UV–Vis and EXAFS Spectroscopy. Journal of Solution Chemistry, 2015, 44, 1320-1338.	1.2	9
166	Exact Solution for Coupled Reactive Flow and Dissolution with Porosity Changes. Transport in Porous Media, 2018, 124, 655-679.	2.6	9
167	CuCl Complexation in the Vapor Phase: Insights from Ab Initio Molecular Dynamics Simulations. Geofluids, 2018, 2018, 1-12.	0.7	9
168	Understanding the mobility and retention of uranium and its daughter products. Journal of Hazardous Materials, 2021, 410, 124553.	12.4	9
169	Uranium carbonate complexes demonstrate drastic decrease in stability at elevated temperatures. Communications Chemistry, 2021, 4, .	4.5	9
170	Metal resistant bacteria on gold particles: Implications of how anthropogenic contaminants could affect natural gold biogeochemical cycling. Science of the Total Environment, 2020, 727, 138698.	8.0	9
171	Francoisite-(Ce), a new mineral species from La Creusaz uranium deposit (Valais, Switzerland) and from Radium Ridge (Flinders Ranges, South Australia): Description and genesis. American Mineralogist, 2010, 95, 1527-1532.	1.9	8
172	The dynamic uptake of lead and its radionuclides by natural and synthetic aluminium-phosphate-sulfates. Minerals Engineering, 2021, 160, 106659.	4.3	8
173	Formation of Mg-carbonates and Mg-hydroxides via calcite replacement controlled by fluid pressure. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	8
174	Synchronous solid-state diffusion, dissolution-reprecipitation, and recrystallization leading to isotopic resetting: insights from chalcopyrite replacement by copper sulfides. Geochimica Et Cosmochimica Acta, 2022, 331, 48-68.	3.9	8
175	Birchite, a new mineral from Broken Hill, New South Wales, Australia: Description and structure refinement. American Mineralogist, 2008, 93, 910-917.	1.9	7
176	A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations. Review of Scientific Instruments, 2010, 81, 105107.	1.3	7
177	Leucostaurite, Pb2[B5O9]Cl{middle dot}0.5H2O, from the Atacama Desert: The first Pb-dominant member of the hilgardite group, and micro-determination of boron in minerals by PIGE. American Mineralogist, 2012, 97, 1206-1212.	1.9	7
178	Nickel exchange between aqueous Ni(II) and deep-sea ferromanganese nodules and crusts. Chemical Geology, 2019, 528, 119276.	3.3	7
179	An experimental and thermodynamic study of sphalerite solubility in chloride-bearing fluids at 300–450°C, 500Âbar: implications for zinc transport in seafloor hydrothermal systems. Geochimica Et Cosmochimica Acta, 2022, 330, 131-147.	3.9	7
180	Single-pass flow-through reaction cell for high-temperature and high-pressurein situneutron diffraction studies of hydrothermal crystallization processes. Journal of Applied Crystallography, 2012, 45, 166-173.	4.5	6

#	Article	IF	Citations
181	Kinetically driven successive sodic and potassic alteration of feldspar. Nature Communications, 2021, 12, 4435.	12.8	6
182	Rapid Marcasite to Pyrite Transformation in Acidic Low-Temperature Hydrothermal Fluids and Saturation Index Control on FeS ₂ Precipitation Dynamics and Phase Selection. ACS Earth and Space Chemistry, 2021, 5, 2453-2465.	2.7	6
183	Tellurium biogeochemical transformation and cycling in a metalliferous semi-arid environment. Geochimica Et Cosmochimica Acta, 2022, 321, 265-292.	3.9	6
184	Bi/Te control on gold mineralizing processes in the North China Craton: Insights from the Wulong gold deposit. Mineralium Deposita, 2023, 58, 263-286.	4.1	6
185	Terraced Iron Formations: Biogeochemical Processes Contributing to Microbial Biomineralization and Microfossil Preservation. Geosciences (Switzerland), 2018, 8, 480.	2.2	5
186	Selective removal of radioactive 210Pb(II) and nonradioactive Pb(II) isotopes from Cu(II)-rich acidic chloride solution by a new polyamine anion exchanger. Separation and Purification Technology, 2020, 251, 117359.	7.9	5
187	An <i>in situ</i> , micro-scale investigation of inorganically and organically driven rare-earth remobilisation during weathering. Mineralogical Magazine, 2021, 85, 105-116.	1.4	5
188	Speciation and thermodynamic properties of La(III)-Cl complexes in hydrothermal fluids: A combined molecular dynamics and in situ X-ray absorption spectroscopy study. Geochimica Et Cosmochimica Acta, 2022, 330, 27-46.	3.9	5
189	Geobiology of <i>ln Situ </i> Uranium Leaching. Advanced Materials Research, 0, 825, 372-375.	0.3	4
190	HighPGibbs, a Practical Tool for Fluidâ€Rock Thermodynamic Simulation in Deep Earth and its Application on Calculating Nitrogen Speciation in Subduction Zone Fluids. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008973.	2.5	4
191	Localised solution environments drive radionuclide fractionation in uraninite. Journal of Hazardous Materials, 2021, 412, 125192.	12.4	4
192	Yttrium speciation in sulfate-rich hydrothermal ore-forming fluids. Geochimica Et Cosmochimica Acta, 2022, 325, 278-295.	3.9	4
193	Energy-saving glasses based on sodium tungsten bronze-like (Na5W14O44) functional units: Facile synthesis, NIR-shielding performance, and formation mechanism. Ceramics International, 2022, 48, 21141-21150.	4.8	4
194	Argandite, Mn7(VO4)2(OH)8, the V analogue of allactite from the metamorphosed Mn ores at Pipji, Turtmann Valley, Switzerland. American Mineralogist, 2011, 96, 1894-1900.	1.9	3
195	Syntheses and Crystallization of Mineralogically Relevant Chalcogenide Glasses. Journal of the American Ceramic Society, 2010, 93, 2434-2437.	3.8	2
196	The crystal structure of cesbronite, Cu ₃ TeO ₄ (OH) ₄ : a novel sheet tellurate topology. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 24-31.	1.1	2
197	Goldilocks effect of fluorine and chlorine in albitisation. Chemical Geology, 2022, 591, 120728.	3.3	2
198	Natural nanoparticles of the critical element tellurium. Journal of Hazardous Materials Letters, 2022, 3, 100053.	3.6	2

#	Article	IF	CITATIONS
199	Gold particles from Kamchatka: A brief look at gold biogeochemical cycling in a distinct environment. Mineralogical Magazine, 2021, 85, 68-75.	1.4	1
200	Transport and migration of plutonium in different soil types and rainfall regimes. Journal of Environmental Radioactivity, 2022, 248, 106883.	1.7	1
201	Synchrotron Diffraction Study of the Crystal Structure of Ca(UO2)6(SO4)2O2(OH)6·12H2O, a Natural Phase Related to Uranopilite. Minerals (Basel, Switzerland), 2018, 8, 569.	2.0	O
202	FRANK REITH (11 June 1972–14 October 2019) The man with the gold bug. Mineralogical Magazine, 2021, 85, 3-11.	1.4	0