Grégory Stoclet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903828/publications.pdf

Version: 2024-02-01

257450 223800 2,141 59 24 46 citations g-index h-index papers 60 60 60 2241 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Impact of Diethyl Furan-2,5-dicarboxylate as an Aromatic Biobased Monomer toward Lipase-Catalyzed Synthesis of Semiaromatic Copolyesters. ACS Applied Polymer Materials, 2022, 4, 1387-1400.	4.4	11
2	Comparative studies of thermal and mechanical properties of macrocyclic versus linear polylactide. Polymer Bulletin, 2021, 78, 3763-3783.	3.3	4
3	A one pot one step combined radical and ring-opening route for the dual functionalization of starch in aqueous medium. Carbohydrate Polymers, 2021, 254, 117399.	10.2	3
4	Influence of polymerization pressure and post-cure treatment on conversion degree and viscoelastic properties of polymer infiltrated ceramic network. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104286.	3.1	2
5	Mechanical reinforcement and memory effect of strain-induced soft segment crystals in thermoplastic polyurethane-urea elastomers. Polymer, 2021, 223, 123708.	3.8	26
6	Geometric Confinement Controls Stiffness, Strength, Extensibility, and Toughness in Poly(urethane–urea) Copolymers. Macromolecules, 2021, 54, 4704-4725.	4.8	5
7	In-situ SAXS/WAXS investigations of ureidopyrimidinone functionalized semi-crystalline poly(ethylene-co-butylene) supramolecular polymers. Polymer, 2021, 228, 123875.	3.8	8
8	Strain induced crystallization in vulcanized natural rubber containing ground tire rubber particles with reinforcement and nucleation abilities. Polymer Testing, 2021, 101, 107313.	4.8	19
9	Poly(lactide)/cellulose nanocrystal nanocomposites by highâ€shear mixing. Polymer Engineering and Science, 2021, 61, 1028-1040.	3.1	13
10	Stiff, Strong, Tough, and Highly Stretchable Hydrogels Based on Dual Stimuli-Responsive Semicrystalline Poly(urethane–urea) Copolymers. ACS Applied Polymer Materials, 2021, 3, 5683-5695.	4.4	4
11	Lactide Lactone Chain Shuttling Copolymerization Mediated by an Aminobisphenolate Supported Aluminum Complex and Al(O <i>i</i> Pr) ₃ : Access to New Polylactide Based Block Copolymers. Journal of the American Chemical Society, 2021, 143, 21206-21210.	13.7	14
12	Influence of pH on CeIV-[AsIIIW9O33]9â^' association for the formation of hexanuclear cerium(iv) oxo-hydroxo-clusters stabilized by trivacant polyanions. CrystEngComm, 2020, 22, 371-380.	2.6	6
13	Synthesis and Structural Characterization of Lanthanideâ€Containing Polytungstoâ€entimonate [{Sb 3 (Âμ) Tj E Chemistry, 2020, 2020, 3837-3845.	TQq1 1 0. 2.0	784314 rg <mark>8T</mark> 2
14	Beta Phase Crystallization and Ferro- and Piezoelectric Performances of Melt-Processed Poly(vinylidene difluoride) Blends with Poly(methyl methacrylate) Copolymers Containing Ionizable Moieties. ACS Applied Polymer Materials, 2020, 2, 3766-3780.	4.4	12
15	Impact of Nanoconfinement on Polylactide Crystallization and Gas Barrier Properties. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9953-9965.	8.0	21
16	Crystal Chemistry and SAXS Studies of an Octahedral Polyoxoarsenotungstate Nanocluster Encapsulating Four Unprecedented Thorium Arsenate Fragments ({Th 3 As 2 O n } – n = 25 or 26). European Journal of Inorganic Chemistry, 2019, 2019, 4487-4487.	2.0	0
17	Crystal Chemistry and SAXS Studies of an Octahedral Polyoxoarsenotungstate Nanocluster Encapsulating Four Unprecedented Thorium Arsenate Fragments ({Th 3 As 2 O n } – n = 25 or 26). European Journal of Inorganic Chemistry, 2019, 2019, 4500-4505.	2.0	5
18	Relationships between crystalline structure and the thermal behavior of poly(ethylene) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5 3.1	50 67 Td (2,5â 10

#	Article	IF	CITATIONS
19	Uranyl Cation Incorporation in the [P ₈ W ₄₈ O ₁₈₄] ^{40–} Macrocycle Phosphopolytungstate. Inorganic Chemistry, 2019, 58, 1091-1099.	4.0	16
20	Water–soluble extracts from banana pseudo–stem as functional additives for polylactic acid: Thermal and mechanical investigations. European Polymer Journal, 2019, 112, 466-476.	5.4	12
21	Structural characterization and mechanical properties of dextrin-graft-poly(butyl) Tj ETQq1 1 0.784314 rgBT /Ove	rlock 10 T	f 5 0 662 Td
22	Processing of PVDF-based electroactive/ferroelectric films: importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals. Soft Matter, 2018, 14, 4591-4602.	2.7	36
23	Structural and Dynamic Heterogeneity in the Amorphous Phase of Poly(<scp> </scp> , <scp> </scp> -lactide) Confined at the Nanoscale by the Coextrusion Process. Macromolecules, 2018, 51, 128-136.	4.8	23
24	Poly(εâ€caprolactone) and Poly(ωâ€pentadecalactone)â€Based Networks with Twoâ€Way Shapeâ€Memory Ef through [2+2] Cycloaddition Reactions. Macromolecular Chemistry and Physics, 2018, 219, 1700345.	fect 2.2	16
25	On the strain-induced structural evolution of Poly(ethylene-2,5-furanoate) upon uniaxial stretching: An in-situ SAXS-WAXS study. Polymer, 2018, 134, 227-241.	3.8	38
26	Bottom-up synthesis of functionalized {Ce4(SiW9O34)2(l)2} polyoxometalates. CrystEngComm, 2018, 20, 7144-7155.	2.6	6
27	Complexation of tetravalent uranium cations by the As4W40O140 cryptand. CrystEngComm, 2018, 20, 5500-5509.	2.6	8
28	Formation of a new type of uranium(<scp>iv</scp>) poly-oxo cluster {U ₃₈ } based on a controlled release of water <i>via</i> esterification reaction. Chemical Science, 2018, 9, 5021-5032.	7.4	31
29	Influence of fatty chain length and starch composition on structure and properties of fully substituted fatty acid starch esters. Carbohydrate Polymers, 2017, 164, 249-257.	10.2	45
30	Thermally reversible crosslinked copolymers: Solution and bulk behavior. Polymer, 2017, 117, 342-353.	3.8	8
31	Isoprene chain shuttling polymerisation between cis and trans regulating catalysts: straightforward access to a new material. Chemical Communications, 2017, 53, 5330-5333.	4.1	35
32	Strain-induced structural evolution of Poly(l-lactide) and Poly(d-lactide) blends. Polymer, 2016, 99, 231-239.	3.8	15
33	Crystallization of glass-fiber-reinforced polyamide 66 composites: Influence of glass-fiber content and cooling rate. Composites Science and Technology, 2016, 130, 70-77.	7.8	30
34	Effect of biaxial stretching on thermomechanical properties of polylactide based nanocomposites. Polymer, 2016, 99, 358-367.	3.8	34
35	Influence of the Filler Nature on the Crystalline Structure of Polylactide-Based Nanocomposites: New Insights into the Nucleating Effect. Macromolecules, 2016, 49, 2782-2790.	4.8	53
36	In situ SAXS/WAXS investigation of the structural evolution of poly(vinylidene fluoride) upon uniaxial stretching. Polymer, 2016, 84, 148-157.	3.8	39

#	Article	IF	Citations
37	Influence of Processing Conditions on Morphological, Thermal and Degradative Behavior of Nanocomposites Based on Plasticized Poly(3-hydroxybutyrate) and Organo-Modified Clay. Journal of Polymers and the Environment, 2016, 24, 12-22.	5.0	14
38	Tunable hierarchical porous silica materials using hydrothermal sedimentation-aggregation technique. Microporous and Mesoporous Materials, 2015, 208, 140-151.	4.4	9
39	Optimum pressure for the high-pressure polymerization of urethane dimethacrylate. Dental Materials, 2015, 31, 406-412.	3.5	21
40	Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate). Polymer, 2015, 72, 165-176.	3.8	105
41	Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, structure and thermomechanical properties of polylactide based composites. Applied Clay Science, 2015, 116-117, 231-240.	5.2	36
42	Synthesis and application of fatty acid derived templates for the preparation of mesostructured silica material. RSC Advances, 2015, 5, 82488-82491.	3.6	1
43	Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Advances, 2014, 4, 57553-57563.	3. 6	58
44	In-situ SAXS study of the plastic deformation behavior of polylactide upon cold-drawing. Polymer, 2014, 55, 1817-1828.	3.8	60
45	Molecular chain orientation in polycarbonate during equal channel angular extrusion: Experiments and simulations. Computational Materials Science, 2014, 85, 244-252.	3.0	15
46	Isoprene–Styrene Chain Shuttling Copolymerization Mediated by a Lanthanide Halfâ€Sandwich Complex and a Lanthanidocene: Straightforward Access to a New Type of Thermoplastic Elastomers. Angewandte Chemie - International Edition, 2014, 53, 4638-4641.	13.8	67
47	Structural Dependence of the Molecular Mobility in the Amorphous Fractions of Polylactide. Macromolecules, 2014, 47, 5186-5197.	4.8	62
48	Dynamic mechanical analysis of high pressure polymerized urethane dimethacrylate. Dental Materials, 2014, 30, 728-734.	3.5	16
49	Relations between structure and property of polyamide 11 nanocomposites based on raw clays elaborated by waterâ€assisted extrusion. Journal of Applied Polymer Science, 2013, 127, 4809-4824.	2.6	36
50	Emission of volatile organic compounds during processing and use of organoclay-based nanocomposites. Polymer Degradation and Stability, 2013, 98, 557-565.	5.8	12
51	Water Barrier Properties in Biaxially Drawn Poly(lactic acid) Films. Journal of Physical Chemistry B, 2012, 116, 4615-4625.	2.6	106
52	WAXS study of the structural reorganization of semi-crystalline polylactide under tensile drawing. Polymer, 2012, 53, 519-528.	3.8	68
53	Crystallization Behavior of Carbon Nanotubeâ^Polylactide Nanocomposites. Macromolecules, 2011, 44, 6496-6502.	4.8	197
54	Thermal and Strain-Induced Chain Ordering in Lactic Acid Stereocopolymers: Influence of the Composition in Stereomers. Macromolecules, 2011, 44, 4961-4969.	4.8	49

#	Article	IF	CITATIONS
55	Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 2011, 52, 1417-1425.	3.8	136
56	Binary blends of linear ethylene copolymers over a wide crystallinity range: Rheology, crystallization, melting and structure properties. Polymer, 2010, 51, 2903-2917.	3.8	13
57	Strain-Induced Molecular Ordering in Polylactide upon Uniaxial Stretching. Macromolecules, 2010, 43, 1488-1498.	4.8	214
58	New Insights on the Strain-Induced Mesophase of Poly(<scp>d</scp> , <scp>l</scp> -lactide): <i>In Situ</i> WAXS and DSC Study of the Thermo-Mechanical Stability. Macromolecules, 2010, 43, 7228-7237.	4.8	216
59	Crystallization and Mechanical Propertiesof Poly (D, L) Lactide-based Blown Films. International Polymer Processing, 2007, 22, 385-388.	0.5	12