
Grégory Stoclet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Insights on the Strain-Induced Mesophase of Poly(<scp>d</scp> , <scp>l</scp> -lactide): <i>In Situ</i> WAXS and DSC Study of the Thermo-Mechanical Stability. Macromolecules, 2010, 43, 7228-7237.	4.8	216
2	Strain-Induced Molecular Ordering in Polylactide upon Uniaxial Stretching. Macromolecules, 2010, 43, 1488-1498.	4.8	214
3	Crystallization Behavior of Carbon Nanotubeâ^'Polylactide Nanocomposites. Macromolecules, 2011, 44, 6496-6502.	4.8	197
4	Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 2011, 52, 1417-1425.	3.8	136
5	Water Barrier Properties in Biaxially Drawn Poly(lactic acid) Films. Journal of Physical Chemistry B, 2012, 116, 4615-4625.	2.6	106
6	Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate). Polymer, 2015, 72, 165-176.	3.8	105
7	WAXS study of the structural reorganization of semi-crystalline polylactide under tensile drawing. Polymer, 2012, 53, 519-528.	3.8	68
8	Isoprene–Styrene Chain Shuttling Copolymerization Mediated by a Lanthanide Half‣andwich Complex and a Lanthanidocene: Straightforward Access to a New Type of Thermoplastic Elastomers. Angewandte Chemie - International Edition, 2014, 53, 4638-4641.	13.8	67
9	Structural Dependence of the Molecular Mobility in the Amorphous Fractions of Polylactide. Macromolecules, 2014, 47, 5186-5197.	4.8	62
10	In-situ SAXS study of the plastic deformation behavior of polylactide upon cold-drawing. Polymer, 2014, 55, 1817-1828.	3.8	60
11	Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Advances, 2014, 4, 57553-57563.	3.6	58
12	Influence of the Filler Nature on the Crystalline Structure of Polylactide-Based Nanocomposites: New Insights into the Nucleating Effect. Macromolecules, 2016, 49, 2782-2790.	4.8	53
13	Thermal and Strain-Induced Chain Ordering in Lactic Acid Stereocopolymers: Influence of the Composition in Stereomers. Macromolecules, 2011, 44, 4961-4969.	4.8	49
14	Influence of fatty chain length and starch composition on structure and properties of fully substituted fatty acid starch esters. Carbohydrate Polymers, 2017, 164, 249-257.	10.2	45
15	In situ SAXS/WAXS investigation of the structural evolution of poly(vinylidene fluoride) upon uniaxial stretching. Polymer, 2016, 84, 148-157.	3.8	39
16	On the strain-induced structural evolution of Poly(ethylene-2,5-furanoate) upon uniaxial stretching: An in-situ SAXS-WAXS study. Polymer, 2018, 134, 227-241.	3.8	38
17	Relations between structure and property of polyamide 11 nanocomposites based on raw clays elaborated by waterâ€essisted extrusion. Journal of Applied Polymer Science, 2013, 127, 4809-4824.	2.6	36
18	Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, structure and thermomechanical properties of polylactide based composites. Applied Clay Science, 2015, 116-117, 231-240.	5.2	36

GRéGORY STOCLET

#	Article	IF	CITATIONS
19	Processing of PVDF-based electroactive/ferroelectric films: importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals. Soft Matter, 2018, 14, 4591-4602.	2.7	36
20	lsoprene chain shuttling polymerisation between cis and trans regulating catalysts: straightforward access to a new material. Chemical Communications, 2017, 53, 5330-5333.	4.1	35
21	Effect of biaxial stretching on thermomechanical properties of polylactide based nanocomposites. Polymer, 2016, 99, 358-367.	3.8	34
22	Formation of a new type of uranium(<scp>iv</scp>) poly-oxo cluster {U ₃₈ } based on a controlled release of water <i>via</i> esterification reaction. Chemical Science, 2018, 9, 5021-5032.	7.4	31
23	Crystallization of glass-fiber-reinforced polyamide 66 composites: Influence of glass-fiber content and cooling rate. Composites Science and Technology, 2016, 130, 70-77.	7.8	30
24	Mechanical reinforcement and memory effect of strain-induced soft segment crystals in thermoplastic polyurethane-urea elastomers. Polymer, 2021, 223, 123708.	3.8	26
25	Structural and Dynamic Heterogeneity in the Amorphous Phase of Poly(<scp>l</scp> , <scp>l</scp> -lactide) Confined at the Nanoscale by the Coextrusion Process. Macromolecules, 2018, 51, 128-136.	4.8	23
26	Optimum pressure for the high-pressure polymerization of urethane dimethacrylate. Dental Materials, 2015, 31, 406-412.	3.5	21
27	Impact of Nanoconfinement on Polylactide Crystallization and Gas Barrier Properties. ACS Applied Materials & Interfaces, 2020, 12, 9953-9965.	8.0	21
28	Strain induced crystallization in vulcanized natural rubber containing ground tire rubber particles with reinforcement and nucleation abilities. Polymer Testing, 2021, 101, 107313.	4.8	19
29	Dynamic mechanical analysis of high pressure polymerized urethane dimethacrylate. Dental Materials, 2014, 30, 728-734.	3.5	16
30	Poly(εâ€caprolactone) and Poly(ωâ€pentadecalactone)â€Based Networks with Twoâ€Way Shapeâ€Memory Eff through [2+2] Cycloaddition Reactions. Macromolecular Chemistry and Physics, 2018, 219, 1700345.	ect 2.2	16
31	Uranyl Cation Incorporation in the [P ₈ W ₄₈ O ₁₈₄] ^{40–} Macrocycle Phosphopolytungstate. Inorganic Chemistry, 2019, 58, 1091-1099.	4.0	16
32	Molecular chain orientation in polycarbonate during equal channel angular extrusion: Experiments and simulations. Computational Materials Science, 2014, 85, 244-252.	3.0	15
33	Strain-induced structural evolution of Poly(l-lactide) and Poly(d-lactide) blends. Polymer, 2016, 99, 231-239.	3.8	15
34	Influence of Processing Conditions on Morphological, Thermal and Degradative Behavior of Nanocomposites Based on Plasticized Poly(3-hydroxybutyrate) and Organo-Modified Clay. Journal of Polymers and the Environment, 2016, 24, 12-22.	5.0	14
35	Lactide Lactone Chain Shuttling Copolymerization Mediated by an Aminobisphenolate Supported Aluminum Complex and Al(O <i>i</i> Pr) ₃ : Access to New Polylactide Based Block Copolymers. Journal of the American Chemical Society, 2021, 143, 21206-21210.	13.7	14
36	Binary blends of linear ethylene copolymers over a wide crystallinity range: Rheology, crystallization, melting and structure properties. Polymer, 2010, 51, 2903-2917.	3.8	13

GRéGORY STOCLET

#	Article	IF	CITATIONS
37	Poly(lactide)/cellulose nanocrystal nanocomposites by highâ€ s hear mixing. Polymer Engineering and Science, 2021, 61, 1028-1040.	3.1	13
38	Crystallization and Mechanical Propertiesof Poly (D, L) Lactide-based Blown Films. International Polymer Processing, 2007, 22, 385-388.	0.5	12
39	Emission of volatile organic compounds during processing and use of organoclay-based nanocomposites. Polymer Degradation and Stability, 2013, 98, 557-565.	5.8	12
40	Water–soluble extracts from banana pseudo–stem as functional additives for polylactic acid: Thermal and mechanical investigations. European Polymer Journal, 2019, 112, 466-476.	5.4	12
41	Beta Phase Crystallization and Ferro- and Piezoelectric Performances of Melt-Processed Poly(vinylidene difluoride) Blends with Poly(methyl methacrylate) Copolymers Containing Ionizable Moieties. ACS Applied Polymer Materials, 2020, 2, 3766-3780.	4.4	12
42	The Impact of Diethyl Furan-2,5-dicarboxylate as an Aromatic Biobased Monomer toward Lipase-Catalyzed Synthesis of Semiaromatic Copolyesters. ACS Applied Polymer Materials, 2022, 4, 1387-1400.	4.4	11
43	Relationships between crystalline structure and the thermal behavior of poly(ethylene) Tj ETQq1 1 0.784314 rgB 2019, 59, 1667-1677.	7 /Overlock 3.1	10 Tf 50 50 10
44	Tunable hierarchical porous silica materials using hydrothermal sedimentation-aggregation technique. Microporous and Mesoporous Materials, 2015, 208, 140-151.	4.4	9
45	Thermally reversible crosslinked copolymers: Solution and bulk behavior. Polymer, 2017, 117, 342-353.	3.8	8
46	Complexation of tetravalent uranium cations by the As4W40O140 cryptand. CrystEngComm, 2018, 20, 5500-5509.	2.6	8
47	In-situ SAXS/WAXS investigations of ureidopyrimidinone functionalized semi-crystalline poly(ethylene-co-butylene) supramolecular polymers. Polymer, 2021, 228, 123875.	3.8	8
48	Structural characterization and mechanical properties of dextrin-graft-poly(butyl) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 302	Td (acrylate
49	Bottom-up synthesis of functionalized {Ce4(SiW9O34)2(l)2} polyoxometalates. CrystEngComm, 2018, 20, 7144-7155.	2.6	6
50	Influence of pH on CeIV-[AsIIIW9O33]9â^' association for the formation of hexanuclear cerium(iv) oxo-hydroxo-clusters stabilized by trivacant polyanions. CrystEngComm, 2020, 22, 371-380.	2.6	6
51	Crystal Chemistry and SAXS Studies of an Octahedral Polyoxoarsenotungstate Nanocluster Encapsulating Four Unprecedented Thorium Arsenate Fragments ({Th 3 As 2 O n } – n = 25 or 26). European Journal of Inorganic Chemistry, 2019, 2019, 4500-4505.	2.0	5
52	Geometric Confinement Controls Stiffness, Strength, Extensibility, and Toughness in Poly(urethane–urea) Copolymers. Macromolecules, 2021, 54, 4704-4725.	4.8	5
53	Comparative studies of thermal and mechanical properties of macrocyclic versus linear polylactide. Polymer Bulletin, 2021, 78, 3763-3783.	3.3	4
54	Stiff, Strong, Tough, and Highly Stretchable Hydrogels Based on Dual Stimuli-Responsive Semicrystalline Poly(urethane–urea) Copolymers. ACS Applied Polymer Materials, 2021, 3, 5683-5695.	4.4	4

#	Article	IF	CITATIONS
55	A one pot one step combined radical and ring-opening route for the dual functionalization of starch in aqueous medium. Carbohydrate Polymers, 2021, 254, 117399.	10.2	3
56	Synthesis and Structural Characterization of Lanthanideâ€Containing Polytungstoâ€antimonate [{Sb 3 (Âμ) Tj E Chemistry, 2020, 2020, 3837-3845.	TQq0 0 0 2.0	rgBT /Overloc 2
57	Influence of polymerization pressure and post-cure treatment on conversion degree and viscoelastic properties of polymer infiltrated ceramic network. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104286.	3.1	2
58	Synthesis and application of fatty acid derived templates for the preparation of mesostructured silica material. RSC Advances, 2015, 5, 82488-82491.	3.6	1
59	Crystal Chemistry and SAXS Studies of an Octahedral Polyoxoarsenotungstate Nanocluster Encapsulating Four Unprecedented Thorium Arsenate Fragments ({Th 3 As 2 O n } – n = 25 or 26). European Journal of Inorganic Chemistry, 2019, 2019, 4487-4487.	2.0	Ο