
Dustin J Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/790355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Projecting Coral Reef Futures Under Global Warming and Ocean Acidification. Science, 2011, 333, 418-422.	6.0	1,001
2	When is a maternal effect adaptive?. Oikos, 2007, 116, 1957-1963.	1.2	692
3	Fish reproductive-energy output increases disproportionately with body size. Science, 2018, 360, 642-645.	6.0	397
4	Predicting evolutionary responses to climate change in the sea. Ecology Letters, 2013, 16, 1488-1500.	3.0	340
5	Adaptive parental effects: the importance of estimating environmental predictability and offspring fitness appropriately. Oikos, 2014, 123, 769-776.	1.2	245
6	Offspring Size Plasticity in Response to Intraspecific Competition: An Adaptive Maternal Effect across Lifeâ€History Stages. American Naturalist, 2008, 171, 225-237.	1.0	236
7	Phenotype–environment mismatches reduce connectivity in the sea. Ecology Letters, 2010, 13, 128-140.	3.0	234
8	Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Marine Ecology - Progress Series, 2003, 255, 145-153.	0.9	204
9	TRANSGENERATIONAL PLASTICITY IN THE SEA: CONTEXT-DEPENDENT MATERNAL EFFECTS ACROSS THE LIFE HISTORY. Ecology, 2008, 89, 418-427.	1.5	199
10	Coping with environmental uncertainty: dynamic bet hedging as a maternal effect. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1087-1096.	1.8	188
11	The Evolutionary Ecology of Offspring Size in Marine Invertebrates. Advances in Marine Biology, 2007, 53, 1-60.	0.7	173
12	OFFSPRING SIZE AFFECTS THE POST-METAMORPHIC PERFORMANCE OF A COLONIAL MARINE INVERTEBRATE. Ecology, 2003, 84, 3131-3137.	1.5	161
13	Ecological and Evolutionary Consequences of Linked Life-History Stages in the Sea. Current Biology, 2011, 21, R718-R725.	1.8	158
14	Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180186.	1.8	145
15	OFFSPRING SIZE VARIATION WITHIN BROODS AS A BETâ€HEDGING STRATEGY IN UNPREDICTABLE ENVIRONMENTS. Ecology, 2008, 89, 2506-2517.	1.5	144
16	The Biogeography of Marine Invertebrate Life Histories. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 97-114.	3.8	133
17	MALE-BY-FEMALE INTERACTIONS INFLUENCE FERTILIZATION SUCCESS AND MEDIATE THE BENEFITS OF POLYANDRY IN THE SEA URCHIN HELIOCIDARIS ERYTHROGRAMMA. Evolution; International Journal of Organic Evolution, 2005, 59, 106-112.	1.1	129
18	The relationship between maternal phenotype and offspring quality: Do older mothers really produce the best offspring?. Ecology, 2010, 91, 2862-2873.	1.5	128

#	Article	IF	CITATIONS
19	Understanding variation in metabolic rate. Journal of Experimental Biology, 2018, 221, .	0.8	123
20	OFFSPRING SIZE EFFECTS MEDIATE COMPETITIVE INTERACTIONS IN A COLONIAL MARINE INVERTEBRATE. Ecology, 2006, 87, 214-225.	1.5	118
21	Temperature-induced maternal effects and environmental predictability. Journal of Experimental Biology, 2011, 214, 2329-2336.	0.8	113
22	Larval activity levels and delayed metamorphosis affect post-larval performance in the colonial ascidian Diplosoma listerianum. Marine Ecology - Progress Series, 2003, 246, 153-162.	0.9	105
23	Gamete plasticity in a broadcast spawning marine invertebrate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13508-13513.	3.3	89
24	Transgenerational plasticity and environmental stress: do paternal effects act as a conduit or a buffer?. Functional Ecology, 2016, 30, 1175-1184.	1.7	88
25	Adaptive paternal effects? Experimental evidence that the paternal environment affects offspring performance. Ecology, 2013, 94, 2575-2582.	1.5	87
26	The origin and maintenance of metabolic allometry in animals. Nature Ecology and Evolution, 2019, 3, 598-603.	3.4	86
27	Environmental stress, facilitation, competition, and coexistence. Ecology, 2013, 94, 2719-2731.	1.5	84
28	Desperate larvae: influence of deferred costs and habitat requirements on habitat selection. Marine Ecology - Progress Series, 2007, 335, 143-153.	0.9	77
29	SOURCES OF GENETIC AND PHENOTYPIC VARIANCE IN FERTILIZATION RATES AND LARVAL TRAITS IN A SEA URCHIN. Evolution; International Journal of Organic Evolution, 2007, 61, 2832-2838.	1.1	76
30	The Relationship between Offspring Size and Performance in the Sea. American Naturalist, 2008, 171, 214-224.	1.0	76
31	How do dispersal costs and habitat selection influence realized population connectivity?. Ecology, 2012, 93, 1378-1387.	1.5	75
32	Deconstructing environmental predictability: seasonality, environmental colour and the biogeography of marine life histories. Ecology Letters, 2015, 18, 174-181.	3.0	67
33	A Manipulative Test of Competing Theories for Metabolic Scaling. American Naturalist, 2011, 178, 746-754.	1.0	65
34	In situ measures of spawning synchrony and fertilization success in an intertidal, free-spawning invertebrate. Marine Ecology - Progress Series, 2002, 236, 113-119.	0.9	64
35	Adaptive maternal and paternal effects: gamete plasticity in response to parental stress. Functional Ecology, 2014, 28, 724-733.	1.7	63
36	Intraspecific co-variation between egg and body size affects fertilisation kinetics of free-spawning marine invertebrates. Marine Ecology - Progress Series, 2000, 195, 305-309.	0.9	63

#	Article	IF	CITATIONS
37	Variable effects of larval size on post-metamorphic performance in the field. Marine Ecology - Progress Series, 2004, 279, 73-80.	0.9	63
38	Sperm environment affects offspring quality in broadcast spawning marine invertebrates. Ecology Letters, 2002, 5, 173-176.	3.0	62
39	Competition in benthic marine invertebrates: the unrecognized role of exploitative competition for oxygen. Ecology, 2013, 94, 126-135.	1.5	62
40	Complex life cycles and offspring provisioning in marine invertebrates. Integrative and Comparative Biology, 2006, 46, 643-651.	0.9	59
41	Fertilisation is not a new beginning: sperm environment affects offspring developmental success. Journal of Experimental Biology, 2013, 216, 3104-9.	0.8	58
42	Metabolic rate covaries with fitness and the pace of the life history in the field. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160323.	1.2	58
43	The benefits of polyandry in the free-spawning polychaete Galeolaria caespitosa. Journal of Evolutionary Biology, 2005, 18, 735-741.	0.8	57
44	Have We Outgrown the Existing Models of Growth?. Trends in Ecology and Evolution, 2019, 34, 102-111.	4.2	56
45	Are numbers enough? Colonizer phenotype and abundance interact to affect population dynamics. Journal of Animal Ecology, 2011, 80, 681-687.	1.3	55
46	Linking lifeâ€history theory and metabolic theory explains the offspring sizeâ€ŧemperature relationship. Ecology Letters, 2019, 22, 518-526.	3.0	54
47	Underestimating the benefits of marine protected areas for the replenishment of fished populations. Frontiers in Ecology and the Environment, 2019, 17, 407-413.	1.9	53
48	Global biogeography of marine dispersal potential. Nature Ecology and Evolution, 2020, 4, 1196-1203.	3.4	53
49	Effects of settler size and density on early post-settlement survival of Ciona intestinalis in the field. Marine Ecology - Progress Series, 2003, 259, 139-144.	0.9	52
50	FITNESS CONSEQUENCES OF LARVAL TRAITS PERSIST ACROSS THE METAMORPHIC BOUNDARY. Evolution; International Journal of Organic Evolution, 2011, 65, 3079-3089.	1.1	51
51	A global synthesis of offspring size variation, its ecoâ€evolutionary causes and consequences. Functional Ecology, 2018, 32, 1436-1446.	1.7	50
52	Effects of Egg Size on the Development Time of Non-feeding Larvae. Biological Bulletin, 2007, 212, 6-11.	0.7	49
53	Limiting resources in sessile systems: food enhances diversity and growth of suspension feeders despite available space. Ecology, 2015, 96, 819-827.	1.5	49
54	Spatial arrangement affects population dynamics and competition independent of community composition. Ecology, 2009, 90, 1485-1491.	1.5	48

#	Article	IF	CITATIONS
55	Cell size, photosynthesis and the package effect: an artificial selection approach. New Phytologist, 2018, 219, 449-461.	3.5	48
56	Why do colder mothers produce larger eggs? An optimality approach. Journal of Experimental Biology, 2010, 213, 3796-3801.	0.8	47
57	Reliably estimating the effect of toxicants on fertilization success in marine broadcast spawners. Marine Pollution Bulletin, 2006, 52, 734-738.	2.3	45
58	THE QUICK AND THE DEAD? SPERM COMPETITION AND SEXUAL CONFLICT IN SEA. Evolution; International Journal of Organic Evolution, 2007, 61, 2693-2700.	1.1	44
59	Reevaluating suitable habitat for reintroductions: lessons learnt from the eastern barred bandicoot recovery program. Animal Conservation, 2010, 13, 184-195.	1.5	44
60	The genetic covariance between life cycle stages separated by metamorphosis. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141091.	1.2	44
61	Do Genetic Diversity Effects Drive the Benefits Associated with Multiple Mating? A Test in a Marine Invertebrate. PLoS ONE, 2009, 4, e6347.	1.1	43
62	Estimating physiological tolerances - a comparison of traditional approaches to nonlinear regression techniques. Journal of Experimental Biology, 2013, 216, 2176-82.	0.8	43
63	The relative energetic costs of the larval period, larval swimming and metamorphosis for the ascidian <i>Diplosoma listerianum</i> . Marine and Freshwater Behaviour and Physiology, 2005, 38, 21-29.	0.4	41
64	Why does offspring size affect performance? Integrating metabolic scaling with life-history theory. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151946.	1.2	41
65	When the going gets rough: effect of maternal size manipulation on larval quality. Marine Ecology - Progress Series, 2004, 272, 301-305.	0.9	41
66	Developmental cost theory predicts thermal environment and vulnerability to global warming. Nature Ecology and Evolution, 2020, 4, 406-411.	3.4	40
67	Copper reduces fertilisation success and exacerbates Allee effects in the field. Marine Ecology - Progress Series, 2007, 333, 51-60.	0.9	40
68	GENETIC MECHANISMS OF POLLUTION RESISTANCE IN A MARINE INVERTEBRATE. Ecological Applications, 2007, 17, 2290-2297.	1.8	39
69	Genetic diversity increases population productivity in a sessile marine invertebrate. Ecology, 2012, 93, 1134-1142.	1.5	37
70	DOES GENETIC DIVERSITY REDUCE SIBLING COMPETITION?. Evolution; International Journal of Organic Evolution, 2012, 66, 94-102.	1.1	37
71	Global change, lifeâ€history complexity and the potential for evolutionary rescue. Evolutionary Applications, 2016, 9, 1189-1201.	1.5	37
72	Less inhibited with age? Larval age modifies responses to natural settlement inhibitors. Biofouling, 2006, 22, 101-106.	0.8	36

#	Article	IF	CITATIONS
73	Non-lethal effects of an invasive species in the marine environment: the importance of early life-history stages. Oecologia, 2009, 159, 873-882.	0.9	34
74	Does interspecific competition affect offspring provisioning. Ecology, 2009, 90, 487-495.	1.5	34
75	Does the relationship between offspring size and performance change across the life-history?. Oikos, 2010, 119, 154-162.	1.2	34
76	Family conflicts in the sea. Trends in Ecology and Evolution, 2010, 25, 442-449.	4.2	34
77	Estimating monotonic rates from biological data using local linear regression. Journal of Experimental Biology, 2017, 220, 759-764.	0.8	34
78	How does parental environment influence the potential for adaptation to global change?. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181374.	1.2	34
79	Male-by-female interactions influence fertilization success and mediate the benefits of polyandry in the sea urchin Heliocidaris erythrogramma. Evolution; International Journal of Organic Evolution, 2005, 59, 106-12.	1.1	34
80	Environmentally induced (co)variance in sperm and offspring phenotypes as a source of epigenetic effects. Journal of Experimental Biology, 2015, 218, 107-113.	0.8	33
81	Consequences of spawning at low tide: limited gamete dispersal for a rockpool anemone. Marine Ecology - Progress Series, 2004, 266, 135-142.	0.9	33
82	Do invasive species live faster? Massâ€ s pecific metabolic rate depends on growth form and invasion status. Functional Ecology, 2017, 31, 2080-2086.	1.7	32
83	Fertilization Is Not a New Beginning: The Relationship between Sperm Longevity and Offspring Performance. PLoS ONE, 2012, 7, e49167.	1.1	31
84	Reproductive hyperallometry and managing the world's fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
85	Revealing hidden evolutionary capacity to cope with global change. Global Change Biology, 2015, 21, 3356-3366.	4.2	30
86	Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions. Global Change Biology, 2017, 23, 2321-2330.	4.2	30
87	Context-dependent genetic benefits of polyandry in a marine hermaphrodite. Biology Letters, 2007, 3, 685-688.	1.0	29
88	Circulation constrains the evolution of larval development modes and life histories in the coastal ocean. Ecology, 2014, 95, 1022-1032.	1.5	29
89	Global environmental drivers of marine fish egg size. Global Ecology and Biogeography, 2018, 27, 890-898.	2.7	29
90	Pre-Settlement Behavior in Larval Bryozoans: The Roles of Larval Age and Size. Biological Bulletin, 2009, 216, 344-354.	0.7	28

6

#	Article	IF	CITATIONS
91	The early sperm gets the good egg: mating order effects in free spawners. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1585-1589.	1.2	27
92	Does egg competition occur in marine broadcast-spawners?. Journal of Evolutionary Biology, 2005, 18, 1244-1252.	0.8	27
93	THE MAINTENANCE OF SPERM VARIABILITY: CONTEXT-DEPENDENT SELECTION ON SPERM MORPHOLOGY IN A BROADCAST SPAWNING INVERTEBRATE. Evolution; International Journal of Organic Evolution, 2012, 67, no-no.	1.1	27
94	Local Gamete Competition Explains Sex Allocation and Fertilization Strategies in the Sea. American Naturalist, 2014, 184, E32-E49.	1.0	27
95	Ecoâ€energetic consequences of evolutionary shifts in body size. Ecology Letters, 2018, 21, 54-62.	3.0	27
96	Metabolic rate, context-dependent selection, and the competition-colonization trade-off. Evolution Letters, 2020, 4, 333-344.	1.6	26
97	The larval legacy: cascading effects of recruit phenotype on post-recruitment interactions. Oikos, 2010, 119, 1977-1983.	1.2	25
98	Sizeâ€abundance rules? Evolution changes scaling relationships between size, metabolism and demography. Ecology Letters, 2019, 22, 1407-1416.	3.0	25
99	Propagule size effects across multiple lifeâ€history stages in a marine invertebrate. Functional Ecology, 2010, 24, 685-693.	1.7	24
100	Larval desperation and histamine: how simple responses can lead to complex changes in larval behaviour. Journal of Experimental Biology, 2007, 210, 3228-3235.	0.8	23
101	Sources of variation in larval quality for free-spawning marine invertebrates: Egg size and the local sperm environment. Invertebrate Reproduction and Development, 2003, 44, 63-70.	0.3	22
102	Costs of dispersal alter optimal offspring size in patchy habitats: combining theory and data for a marine invertebrate. Functional Ecology, 2013, 27, 757-765.	1.7	22
103	Geographical bias in physiological data limits predictions of global change impacts. Functional Ecology, 2021, 35, 1572-1578.	1.7	22
104	Long-term experimental evolution decouples size and production costs in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
105	Latitudinal variability in spatial genetic structure in the invasive ascidian, Styela plicata. Marine Biology, 2010, 157, 1955-1965.	0.7	21
106	Minimal increase in genetic diversity enhances predation resistance. Molecular Ecology, 2012, 21, 1741-1753.	2.0	21
107	INTERSPECIFIC COMPETITION ALTERS NONLINEAR SELECTION ON OFFSPRING SIZE IN THE FIELD. Evolution; International Journal of Organic Evolution, 2013, 67, 328-337.	1.1	21
108	Phytoplankton sizeâ€scaling of netâ€energy flux across light and biomass gradients. Ecology, 2017, 98, 3106-3115.	1.5	21

#	Article	IF	CITATIONS
109	The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change?. Evolutionary Applications, 2017, 10, 267-275.	1.5	21
110	Advantages and disadvantages of interferenceâ€competitive ability and resourceâ€use efficiency when invading established communities. Oikos, 2012, 121, 396-402.	1.2	20
111	Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects. Scientific Reports, 2017, 7, 6281.	1.6	20
112	Physical and physiological impacts of ocean warming alter phenotypic selection on sperm morphology. Functional Ecology, 2020, 34, 646-657.	1.7	20
113	Geographical variation in offspring size effects across generations. Oikos, 2005, 108, 602-608.	1.2	19
114	Sperm release strategies in marine broadcast spawners: the costs of releasing sperm quickly. Journal of Experimental Biology, 2007, 210, 3720-3727.	0.8	19
115	Selection on offspring size among environments: the roles of environmental quality and variability. Functional Ecology, 2010, 24, 676-684.	1.7	19
116	The outsized trophic footprint of marine urbanization. Frontiers in Ecology and the Environment, 2019, 17, 400-406.	1.9	19
117	Aquatic Life History Trajectories Are Shaped by Selection, Not Oxygen Limitation. Trends in Ecology and Evolution, 2019, 34, 182-184.	4.2	19
118	Is what you see what you get? Visual vs. measured assessments of vegetation condition. Journal of Applied Ecology, 2010, 47, 650-661.	1.9	18
119	Phenotypic links among lifeâ€history stages are complex and contextâ€dependent in a marine invertebrate: interactions among offspring size, larval nutrition and postmetamorphic density. Functional Ecology, 2013, 27, 1358-1366.	1.7	18
120	Faster Is Not Always Better: Selection on Growth Rate Fluctuates across Life History and Environments. American Naturalist, 2014, 183, 798-809.	1.0	18
121	Why do larger mothers produce larger offspring? A test of classic theory. Ecology, 2016, 97, 3452-3459.	1.5	18
122	Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification. Biology Letters, 2017, 13, 20160784.	1.0	18
123	Temperature effects on massâ€scaling exponents in colonial animals: a manipulative test. Ecology, 2017, 98, 103-111.	1.5	18
124	Revisiting competition in a classic model system using formal links between theory and data. Ecology, 2012, 93, 2015-2022.	1.5	17
125	Egg Size Effects across Multiple Life-History Stages in the Marine Annelid Hydroides diramphus. PLoS ONE, 2014, 9, e102253.	1.1	17
126	The biogeography of fertilization mode in the sea. Global Ecology and Biogeography, 2015, 24, 1499-1509.	2.7	17

#	Article	IF	CITATIONS
127	Field manipulations of resources mediate the transition from intraspecific competition to facilitation. Journal of Animal Ecology, 2017, 86, 654-661.	1.3	17
128	Relatedness affects the density, distribution and phenotype of colonisers in four sessile marine invertebrates. Oikos, 2013, 122, 881-888.	1.2	16
129	Does the cost of development scale allometrically with offspring size?. Functional Ecology, 2018, 32, 762-772.	1.7	16
130	Do larger individuals cope with resource fluctuations better? An artificial selection approach. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181347.	1.2	16
131	Should We Care If Models Are Phenomenological or Mechanistic?. Trends in Ecology and Evolution, 2019, 34, 276-278.	4.2	16
132	Propagule size and dispersal costs mediate establishment success of an invasive species. Ecology, 2016, 97, 569-575.	1.5	15
133	Unravelling anisogamy: egg size and ejaculate size mediate selection on morphology in free-swimming sperm. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160671.	1.2	15
134	Spatial pattern of distribution of marine invertebrates within a subtidal community: do communities vary more among patches or plots?. Ecology and Evolution, 2016, 6, 8330-8337.	0.8	15
135	Does energy flux predict densityâ€dependence? An empirical field test. Ecology, 2017, 98, 3116-3126.	1.5	15
136	Size and density mediate transitions between competition and facilitation. Ecology Letters, 2019, 22, 1879-1888.	3.0	15
137	Influence of food, body size, and fragmentation on metabolic rate in a sessile marine invertebrate. Invertebrate Biology, 2019, 138, 55-66.	0.3	14
138	Testing the drivers of the temperature–size covariance using artificial selection. Evolution; International Journal of Organic Evolution, 2020, 74, 169-178.	1.1	14
139	Genome Size Affects Fitness in the Eukaryotic Alga Dunaliella tertiolecta. Current Biology, 2020, 30, 3450-3456.e3.	1.8	14
140	Cell size influences inorganic carbon acquisition in artificially selected phytoplankton. New Phytologist, 2021, 229, 2647-2659.	3.5	14
141	Change in the rate of shell deposition and shell microstructure in response to shell borers in the abalone <i>haliotis rubra</i> . Marine and Freshwater Behaviour and Physiology, 2001, 34, 189-195.	0.4	13
142	Associated costs and benefits of a defended phenotype across multiple environments. Functional Ecology, 2010, 24, 1299-1305.	1.7	13
143	Biofilm history and oxygen availability interact to affect habitat selection in a marine invertebrate. Biofouling, 2016, 32, 645-655.	0.8	13
144	Metabolic scaling across succession: Do individual rates predict communityâ€level energy use?. Functional Ecology, 2018, 32, 1447-1456.	1.7	13

#	Article	IF	CITATIONS
145	Metabolism drives demography in an experimental field test. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
146	Genetic Compatibility Underlies Benefits of Mate Choice in an External Fertilizer. American Naturalist, 2016, 187, 647-657.	1.0	12
147	Larger cells have relatively smaller nuclei across the Tree of Life. Evolution Letters, 2021, 5, 306-314.	1.6	12
148	Larval size and age affect colonization in a marine invertebrate. Journal of Experimental Biology, 2014, 217, 3981-7.	0.8	11
149	Offspring size in a resident species affects community assembly. Journal of Animal Ecology, 2014, 83, 322-331.	1.3	11
150	How does spawning frequency scale with body size in marine fishes?. Fish and Fisheries, 2022, 23, 316-323.	2.7	11
151	Phytoplankton diversity affects biomass and energy production differently during community development. Functional Ecology, 2022, 36, 446-457.	1.7	9
152	The Future of Coral Reefs—Response. Science, 2011, 334, 1495-1496.	6.0	8
153	Should mothers provision their offspring equally? A manipulative field test. Ecology Letters, 2017, 20, 1025-1033.	3.0	8
154	Testing MacArthur's minimisation principle: do communities minimise energy wastage during succession?. Ecology Letters, 2018, 21, 1182-1190.	3.0	8
155	Eggs with larger accessory structures are more likely to be fertilized in both low and high sperm concentrations in Styela plicata (Ascidiaceae). Marine Biology, 2015, 162, 2251-2256.	0.7	7
156	Quantifying the role of colonization history and biotic interactions in shaping communities $\hat{a} \in \hat{a}$ community transplant approach. Oikos, 2017, 126, .	1.2	7
157	Plastic but not adaptive: habitatâ€driven differences in metabolic rate despite no differences in selection between habitats. Oikos, 2021, 130, 931-942.	1.2	7
158	Predicting the response of disease vectors to global change: The importance of allometric scaling. Global Change Biology, 2022, 28, 390-402.	4.2	7
159	Environmentâ€dependent variation in selection on life history across small spatial scales. Evolution; International Journal of Organic Evolution, 2016, 70, 2404-2410.	1.1	6
160	The Evolution of Reproductive Phenology in Broadcast Spawners and the Maintenance of Sexually Antagonistic Polymorphism. American Naturalist, 2017, 189, 153-169.	1.0	6
161	Beneficial Mutations from Evolution Experiments Increase Rates of Growth and Fermentation. Journal of Molecular Evolution, 2018, 86, 111-117.	0.8	6
162	Larval Supply and Dispersal. Ecological Studies, 2009, , 165-176.	0.4	6

#	Article	IF	CITATIONS
163	Editorial ―Synthesis in ecology. Oikos, 2012, 121, 801-803.	1.2	5
164	Relative contributions of offspring quality and environmental quality to adult field performance. Oikos, 2016, 125, 210-217.	1.2	5
165	Temperatureâ€mediated variation in selection on offspring size: A multiâ€cohort field study. Functional Ecology, 2021, 35, 2219-2228.	1.7	5
166	Dispersal duration mediates selection on offspring size. Oikos, 2017, 126, 480-487.	1.2	4
167	Biochemical evolution in response to intensive harvesting in algae: Evolution of quality and quantity. Evolutionary Applications, 2018, 11, 1389-1400.	1.5	4
168	How to estimate community energy flux? A comparison of approaches reveals that size-abundance trade-offs alter the scaling of community energy flux. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200995.	1.2	4
169	Community efficiency during succession: a test of MacArthur's minimization principle in phytoplankton communities. Ecology, 2020, 101, e03015.	1.5	4
170	Limited evolutionary responses to harvesting regime in the intensive production of algae. Journal of Applied Phycology, 2017, 29, 1449-1459.	1.5	3
171	Can competitive asymmetries maintain offspring size variation? A manipulative field test. Evolution; International Journal of Organic Evolution, 2019, 73, 1663-1671.	1.1	3
172	Differential resource use in filter-feeding marine invertebrates. Oecologia, 2020, 194, 505-513.	0.9	3
173	Conspecific chemical cues drive density-dependent metabolic suppression independently of resource intake. Journal of Experimental Biology, 2020, 223, .	0.8	3
174	Projecting marine developmental diversity and connectivity in future oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190450.	1.8	3
175	EVOLUTIONARY CONSTRAINTS AND THE MAINTENANCE OF INDIVIDUAL SPECIALIZATION THROUGHOUT SUCCESSION. Evolution; International Journal of Organic Evolution, 2013, 67, 3636-3644.	1.1	2
176	(Re)appreciating the role of life history in ecoâ€evolutionary dynamics. Oikos, 2017, 126, 459-461.	1.2	2
177	Genotypic covariance between the performance of a resident species and community assembly in the field. Functional Ecology, 2018, 32, 533-544.	1.7	2
178	Releasing small ejaculates slowly increases per-gamete fertilization success in an external fertilizer: <i>Galeolaria caespitosa</i> (Polychaeta: Serpulidae). Journal of Evolutionary Biology, 2019, 32, 177-186.	0.8	2
179	Multilevel Selection on Offspring Size and the Maintenance of Variation. American Naturalist, 2021, 197, 448-460.	1.0	2
180	Effects of light variation in algal cultures: a systematic map of temporal scales. Journal of Applied Phycology, 2021, 33, 3483.	1.5	2

#	Article	IF	CITATIONS
181	A comparative analysis testing Werner's theory of complex life cycles. Functional Ecology, 2022, 36, 1986-2000.	1.7	2
182	Two sexes, one body: intra―and intersex covariation of gamete phenotypes in simultaneous hermaphrodites. Ecology and Evolution, 2014, 4, 1340-1346.	0.8	1
183	How not to influence ecology: three things we have learned at Oikos. Oikos, 2016, 125, 1-2.	1.2	1
184	Resources mediate selection on module longevity in the field. Journal of Evolutionary Biology, 2018, 31, 1666-1674.	0.8	1
185	Metabolic phenotype mediates the outcome of competitive interactions in a responseâ€surface field experiment. Ecology and Evolution, 2021, 11, 17952-17962.	0.8	1