Bingbing Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903136/publications.pdf

Version: 2024-02-01

94 6,135 42 papers citations h-index

96 96 9107
all docs docs citations times ranked citing authors

76

g-index

#	Article	IF	CITATIONS
1	Recent Advances on Porous Materials for Synergetic Adsorption and Photocatalysis. Energy and Environmental Materials, 2022, 5, 711-730.	12.8	30
2	A Generic Protocol for Highly Reproducible Manufacturing of Efficient Perovskite Lightâ€Emitting Diodes Using Inâ€Situ Photoluminescence Monitoring. Advanced Materials Technologies, 2022, 7, 2100987.	5.8	3
3	Carbon Supported MoO ₂ Spheres Boosting Ultraâ€6table Lithium Storage with High Volumetric Density. Energy and Environmental Materials, 2022, 5, 245-252.	12.8	18
4	Phase engineering of Mo-V oxides molecular sieves for zinc-ion batteries. Science China Materials, 2022, 65, 939-946.	6.3	4
5	Aqueous Zn2+/Na+ dual-salt batteries with stable discharge voltage and high columbic efficiency by systematic electrolyte regulation. Science China Chemistry, 2022, 65, 399-407.	8.2	23
6	Chiral Ligand-Induced Structural Transformation of Low-Dimensional Hybrid Perovskite for Circularly Polarized Photodetection. Chemistry of Materials, 2022, 34, 2955-2962.	6.7	24
7	Niâ€CeO ₂ Heterostructures in Liâ€6 Batteries: A Balancing Act between Adsorption and Catalytic Conversion of Polysulfide. Advanced Science, 2022, 9, e2105538.	11.2	45
8	Combining Surface Holistic Ge Coating and Subsurface Mg Doping to Enhance the Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathodes. ACS Applied Materials & Doping to Enhance the Electrochemical Performance of LiNi _{0.1} Cathodes. ACS Applied Materials & Doping to Enhance the Electrochemical Performance of LiNi _{0.1} 0.1	8.0	20
9	Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Research, 2022, 15, 7180-7189.	10.4	28
10	Improving Lithium–Sulfur Batteries' Performance via Inverse Vulcanization of Vinylene-Linked Covalent Organic Frameworks. Energy & Fuels, 2022, 36, 5998-6004.	5.1	12
11	High-Efficiency Sky-Blue Perovskite Light-Emitting Diodes via the Trade-Off between the Electron–Phonon Coupling Loss and Defect Passivation. ACS Photonics, 2022, 9, 2422-2430.	6.6	12
12	Developing Preparation Craft Platform for Solid Electrolytes Containing Volatile Components: Experimental Study of Competition between Lithium Loss and Densification in Li ₇ La ₃ Zr ₂ O ₁₂ . ACS Applied Materials & Amp; Interfaces, 2022, 14, 33340-33354.	8.0	20
13	Cryogenic engineering of solid polymer electrolytes for room temperature and 4ÂV-class all-solid-state lithium batteries. Chemical Engineering Journal, 2021, 420, 127623.	12.7	13
14	A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries. Journal of Materials Science and Technology, 2021, 66, 121-127.	10.7	19
15	A Scalable H ₂ O–DMF–DMSO Solvent Synthesis of Highly Luminescent Inorganic Perovskiteâ€Related Cesium Lead Bromides. Advanced Optical Materials, 2021, 9, 2001435.	7.3	16
16	Self-templating construction of N, P-co-doped carbon nanosheets for efficient eletreocatalytic oxygen reduction reaction. Chemical Engineering Journal, 2021, 410, 128015.	12.7	33
17	Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler. Nano Energy, 2021, 79, 105475.	16.0	61
18	Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 7171-7177.	8.0	56

#	Article	IF	CITATIONS
19	2D Cs ₂ AgBiBr ₆ with Boosted Light–Matter Interaction for Highâ€Performance Photodetectors. Advanced Optical Materials, 2021, 9, 2001930.	7.3	42
20	A Scalable H ₂ O–DMF–DMSO Solvent Synthesis of Highly Luminescent Inorganic Perovskiteâ€Related Cesium Lead Bromides (Advanced Optical Materials 3/2021). Advanced Optical Materials, 2021, 9, 2170012.	7. 3	1
21	Co ₃ Se ₄ Quantum Dots as an Ultrastable Host Material for Potassium″on Intercalation. Advanced Materials, 2021, 33, e2102164.	21.0	40
22	Adsorption and visible-light photocatalytic degradation of organic pollutants by functionalized biochar: Role of iodine doping and reactive species. Environmental Research, 2021, 197, 111026.	7. 5	31
23	Porosity Engineering of MXene Membrane towards Polysulfide Inhibition and Fast Lithium Ion Transportation for Lithium–Sulfur Batteries. Small, 2021, 17, e2007442.	10.0	57
24	Ternary Si–SiO–Al Composite Films as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 34447-34456.	8.0	20
25	Efficient White Photoluminescence from Self-Trapped Excitons in Sb ³⁺ /Bi ³⁺ -Codoped Cs ₂ NalnCl ₆ Double Perovskites with Tunable Dual-Emission. ACS Energy Letters, 2021, 6, 3343-3351.	17.4	126
26	Phase transformation and grain-boundary segregation in Al-Doped Li7La3Zr2O12 ceramics. Ceramics International, 2021, 47, 22768-22775.	4.8	50
27	Cerium Oxysulfide with O–Ce–S Bindings for Efficient Adsorption and Conversion of Lithium Polysulfide in Li–S Batteries. Inorganic Chemistry, 2021, 60, 12847-12854.	4.0	12
28	Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcoholâ€Borax Layer. Angewandte Chemie - International Edition, 2021, 60, 25122-25127.	13.8	32
29	Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcoholâ€Borax Layer. Angewandte Chemie, 2021, 133, 25326-25331.	2.0	4
30	Suppressing Li Dendrite Puncture with a Hierarchical h-BN Protective Layer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56109-56115.	8.0	9
31	Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS ₂ Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms. Environmental Science & Effects and Inactivation Mechanisms.	10.0	69
32	Hermetically encapsulating sulfur by FePS ₃ flakes for high-performance lithium sulfur batteries. Chemical Communications, 2020, 56, 810-813.	4.1	13
33	Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries. Energy Storage Materials, 2020, 33, 173-180.	18.0	78
34	Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithiumâ€lon Cells. ChemSusChem, 2020, 13, 5571-5579.	6.8	14
35	Self-Assembly of Monodispersed Closely Packed Composite Superstructures by Anchoring Nanoparticles into Multihierarchical Frameworks. ACS Sustainable Chemistry and Engineering, 2020, 8, 18966-18974.	6.7	1
36	Synergistic Effect of Salinized Quinone for Entrapment of Polysulfides for High-Performance Li–S Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23867-23873.	8.0	11

#	Article	IF	Citations
37	Spectroscopy of buried states in black phosphorus with surface doping. 2D Materials, 2020, 7, 035027.	4.4	13
38	In-Plane Ferroelectric Tin Monosulfide and Its Application in a Ferroelectric Analog Synaptic Device. ACS Nano, 2020, 14, 7628-7638.	14.6	106
39	Lithiophilic Silver Coating on Lithium Metal Surface for Inhibiting Lithium Dendrites. Frontiers in Chemistry, 2020, 8, 109.	3.6	16
40	Nitrogen-doped 3D nanocarbon with nanopore defects as high-capacity and stable anode materials for sodium/lithium-ion batteries. Materials Today Energy, 2020, 16, 100395.	4.7	17
41	Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes. Nano-Micro Letters, 2020, 12, 60.	27.0	60
42	Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO ₂ -Supported Gel Polymer Electrolyte. ACS Energy Letters, 2020, 5, 1681-1688.	17.4	85
43	Controllable nonlinear optical properties of different-sized iron phosphorus trichalcogenide (FePS3) nanosheets. Nanophotonics, 2020, 9, 4555-4564.	6.0	9
44	Postâ€Treatment of CH ₃ NH ₃ Pbl ₃ /Pbl ₂ Composite Films with Methylamine to Realize Highâ€Performance Photoconductor Devices. Chemistry - an Asian Journal, 2019, 14, 2861-2868.	3.3	7
45	Template growth of perovskites on yarn fibers induced by capillarity for flexible photoelectric applications. Journal of Materials Chemistry C, 2019, 7, 9496-9503.	5.5	12
46	Direct Observation of Band Gap Renormalization in Layered Indium Selenide. ACS Nano, 2019, 13, 13486-13491.	14.6	13
47	Influence of the Organic Chain on the Optical Properties of Two-Dimensional Organic–Inorganic Hybrid Lead Iodide Perovskites. ACS Applied Electronic Materials, 2019, 1, 2253-2259.	4.3	13
48	Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. Journal of Materials Chemistry A, 2019, 7, 540-548.	10.3	26
49	Oxygenâ€Functionalized Ultrathin Ti ₃ C ₂ T _{<i>x</i>} MXene for Enhanced Electrocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 1368-1373.	6.8	204
50	Staging: Unraveling the Potassium Storage Mechanism in Graphite Foam (Adv. Energy Mater. 22/2019). Advanced Energy Materials, 2019, 9, 1970081.	19.5	5
51	Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9997-10003.	10.3	102
52	Unraveling the Potassium Storage Mechanism in Graphite Foam. Advanced Energy Materials, 2019, 9, 1900579.	19.5	133
53	Nitrogen, Oxygen and Cobalt multiple-doped graphitized mesoporous carbon as a cost-effective carbon host with high sulfur content for lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 787, 1356-1364.	5.5	11
54	Vanadium Doping Enhanced Electrochemical Performance of Molybdenum Oxide in Lithiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1805227.	14.9	79

#	Article	IF	Citations
55	Band Gap Renormalization, Carrier Multiplication, and Stark Broadening in Photoexcited Black Phosphorus. Nano Letters, 2019, 19, 488-493.	9.1	26
56	Lithium Titanate Matrix-Supported Nanocrystalline Silicon Film as an Anode for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 534-540.	8.0	24
57	Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chemistry of Materials, 2018, 30, 2742-2749.	6.7	132
58	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 2018, 30, 1762-1768.	6.7	169
59	Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chemical Communications, 2018, 54, 2349-2352.	4.1	205
60	Reticular V ₂ O ₅ ·0.6H ₂ O Xerogel as Cathode for Rechargeable Potassium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 642-650.	8.0	70
61	Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nature Communications, 2018, 9, 80.	12.8	123
62	B, N Codoped and Defectâ€Rich Nanocarbon Material as a Metalâ€Free Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Advanced Science, 2018, 5, 1800036.	11,2	202
63	The effect of Na2S additive in alkaline electrolyte on improved performances of Fe-based air batteries. Electrochimica Acta, 2018, 259, 196-203.	5.2	26
64	Direct Observation of Perovskite Photodetector Performance Enhancement by Atomically Thin Interface Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36493-36504.	8.0	25
65	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	21.0	163
66	Bubble-assisted fabrication of hollow CoMoO ₄ spheres for energy storage. Chemical Communications, 2018, 54, 10355-10358.	4.1	18
67	Amino group enhanced phenazine derivatives as electrode materials for lithium storage. Chemical Communications, 2017, 53, 2914-2917.	4.1	81
68	Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nature Communications, 2017, 8, 14548.	12.8	174
69	"Electron/Ion Sponge―Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano, 2017, 11, 6911-6920.	14.6	95
70	Reversible multi-electron redox chemistry ofÂÏ€-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nature Energy, 2017, 2, .	39.5	486
71	Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties. Nano-Micro Letters, 2017, 9, 34.	27.0	42
72	Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves. Journal of the American Chemical Society, 2017, 139, 8897-8904.	13.7	151

#	Article	lF	CITATIONS
73	Controlled growth of ultrathin Mo ₂ C superconducting crystals on liquid Cu surface. 2D Materials, 2017, 4, 011012.	4.4	112
74	Phase Transformations in TiS ₂ during K Intercalation. ACS Energy Letters, 2017, 2, 1835-1840.	17.4	104
75	Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2017, 5 , 18933-18950.	10.3	146
76	<i>In Situ</i> Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS ₂ Flakes. Journal of the American Chemical Society, 2017, 139, 10133-10141.	13.7	126
77	Visible-Light Photocatalysis of Aerobic Oxidation Reactions Using Carbazolic Conjugated Microporous Polymers. ACS Catalysis, 2016, 6, 3594-3599.	11.2	195
78	Networked Spin Cages: Tunable Magnetism and Lithium Ion Storage via Modulation of Spin-Electron Interactions. Inorganic Chemistry, 2016, 55, 9892-9897.	4.0	8
79	Lateral Epitaxy of Atomically Sharp WSe ₂ /WS ₂ Heterojunctions on Silicon Dioxide Substrates. Chemistry of Materials, 2016, 28, 7194-7197.	6.7	59
80	Chemical Vapor Deposition of Highâ€Quality Largeâ€Sized MoS ₂ Crystals on Silicon Dioxide Substrates. Advanced Science, 2016, 3, 1500033.	11.2	128
81	Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. ACS Nano, 2016, 10, 9208-9215.	14.6	216
82	Crystal Engineering of Naphthalenediimide-Based Metal–Organic Frameworks: Structure-Dependent Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31067-31075.	8.0	71
83	Polyquinoneimines for lithium storage: more than the sum of its parts. Materials Horizons, 2016, 3, 429-433.	12.2	85
84	<i>In Situ</i> Raman and Nuclear Magnetic Resonance Study of Trapped Lithium in the Solid Electrolyte Interface of Reduced Graphene Oxide. Journal of Physical Chemistry C, 2016, 120, 2600-2608.	3.1	53
85	High-performance NaFePO ₄ formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4882-4892.	10.3	129
86	Insight into Lithium Diffusion in Conversion-Type Iron Oxide Negative Electrode. Journal of Physical Chemistry C, 2015, 119, 919-925.	3.1	29
87	Binary iron-chromium oxide as negative electrode for lithium-ion micro-batteries – spectroscopic and microscopic characterization. Applied Surface Science, 2015, 353, 1170-1178.	6.1	10
88	Aging-Induced Chemical and Morphological Modifications of Thin Film Iron Oxide Electrodes for Lithium-Ion Batteries. Langmuir, 2014, 30, 3538-3547.	3.5	25
89	Combined Surface and Electrochemical Study of the Lithiation/Delithiation Mechanism of the Iron Oxide Thin-Film Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 21651-21661.	3.1	59
90	Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to OÂV. Journal of Solid State Electrochemistry, 2012, 16, 205-211.	2.5	72

#	Article	lF	CITATION
91	Sol–gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509, 7205-7209.	5.5	92
92	Oxygen permeability and structural stability of a novel tantalumâ€doped perovskite BaCo _{0.7} Fe _{0.2} Ta _{0.1} O _{3â°°<i>δ</i>} . AICHE Journal, 2010, 56, 604-610.	3.6	17
93	Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Electrochimica Acta, 2010, 55, 5453-5458.	5.2	216
94	Expanding the ReS ₂ Interlayer Promises High-Performance Potassium-Ion Storage. ACS Applied Materials & Diterlaces, O, , .	8.0	9