Bingbing Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903136/publications.pdf Version: 2024-02-01

RINCRING TIAN

#	Article	IF	CITATIONS
1	Reversible multi-electron redox chemistry ofÂï€-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nature Energy, 2017, 2, .	39.5	486
2	Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Electrochimica Acta, 2010, 55, 5453-5458.	5.2	216
3	Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage. ACS Nano, 2016, 10, 9208-9215.	14.6	216
4	Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chemical Communications, 2018, 54, 2349-2352.	4.1	205
5	Oxygenâ€Functionalized Ultrathin Ti ₃ C ₂ T _{<i>x</i>} MXene for Enhanced Electrocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 1368-1373.	6.8	204
6	B, N Codoped and Defectâ€Rich Nanocarbon Material as a Metalâ€Free Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Advanced Science, 2018, 5, 1800036.	11.2	202
7	Visible-Light Photocatalysis of Aerobic Oxidation Reactions Using Carbazolic Conjugated Microporous Polymers. ACS Catalysis, 2016, 6, 3594-3599.	11.2	195
8	Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nature Communications, 2017, 8, 14548.	12.8	174
9	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 2018, 30, 1762-1768.	6.7	169
10	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	21.0	163
11	Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves. Journal of the American Chemical Society, 2017, 139, 8897-8904.	13.7	151
12	Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 18933-18950.	10.3	146
13	Unraveling the Potassium Storage Mechanism in Graphite Foam. Advanced Energy Materials, 2019, 9, 1900579.	19.5	133
14	Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chemistry of Materials, 2018, 30, 2742-2749.	6.7	132
15	High-performance NaFePO ₄ formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4882-4892.	10.3	129
16	Chemical Vapor Deposition of Highâ€Quality Large‣ized MoS ₂ Crystals on Silicon Dioxide Substrates. Advanced Science, 2016, 3, 1500033.	11.2	128
17	<i>In Situ</i> Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS ₂ Flakes. Journal of the American Chemical Society, 2017, 139, 10133-10141.	13.7	126
18	Efficient White Photoluminescence from Self-Trapped Excitons in Sb ³⁺ /Bi ³⁺ -Codoped Cs ₂ NaInCl ₆ Double Perovskites with Tunable Dual-Emission. ACS Energy Letters, 2021, 6, 3343-3351.	17.4	126

#	Article	IF	CITATIONS
19	Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nature Communications, 2018, 9, 80.	12.8	123
20	Controlled growth of ultrathin Mo ₂ C superconducting crystals on liquid Cu surface. 2D Materials, 2017, 4, 011012.	4.4	112
21	In-Plane Ferroelectric Tin Monosulfide and Its Application in a Ferroelectric Analog Synaptic Device. ACS Nano, 2020, 14, 7628-7638.	14.6	106
22	Phase Transformations in TiS ₂ during K Intercalation. ACS Energy Letters, 2017, 2, 1835-1840.	17.4	104
23	Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9997-10003.	10.3	102
24	"Electron/Ion Sponge―Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano, 2017, 11, 6911-6920.	14.6	95
25	Sol–gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509, 7205-7209.	5.5	92
26	Polyquinoneimines for lithium storage: more than the sum of its parts. Materials Horizons, 2016, 3, 429-433.	12.2	85
27	Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO ₂ -Supported Gel Polymer Electrolyte. ACS Energy Letters, 2020, 5, 1681-1688.	17.4	85
28	Amino group enhanced phenazine derivatives as electrode materials for lithium storage. Chemical Communications, 2017, 53, 2914-2917.	4.1	81
29	Vanadium Doping Enhanced Electrochemical Performance of Molybdenum Oxide in Lithiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1805227.	14.9	79
30	Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries. Energy Storage Materials, 2020, 33, 173-180.	18.0	78
31	Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to OÂV. Journal of Solid State Electrochemistry, 2012, 16, 205-211.	2.5	72
32	Crystal Engineering of Naphthalenediimide-Based Metal–Organic Frameworks: Structure-Dependent Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 31067-31075.	8.0	71
33	Reticular V ₂ O ₅ ·0.6H ₂ O Xerogel as Cathode for Rechargeable Potassium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 642-650.	8.0	70
34	Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS ₂ Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms. Environmental Science & Technology, 2020, 54, 537-549.	10.0	69
35	Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler. Nano Energy, 2021, 79, 105475.	16.0	61
36	Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes. Nano-Micro Letters, 2020, 12, 60.	27.0	60

#	Article	IF	CITATIONS
37	Combined Surface and Electrochemical Study of the Lithiation/Delithiation Mechanism of the Iron Oxide Thin-Film Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 21651-21661.	3.1	59
38	Lateral Epitaxy of Atomically Sharp WSe ₂ /WS ₂ Heterojunctions on Silicon Dioxide Substrates. Chemistry of Materials, 2016, 28, 7194-7197.	6.7	59
39	Porosity Engineering of MXene Membrane towards Polysulfide Inhibition and Fast Lithium Ion Transportation for Lithium–Sulfur Batteries. Small, 2021, 17, e2007442.	10.0	57
40	Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 7171-7177.	8.0	56
41	<i>In Situ</i> Raman and Nuclear Magnetic Resonance Study of Trapped Lithium in the Solid Electrolyte Interface of Reduced Graphene Oxide. Journal of Physical Chemistry C, 2016, 120, 2600-2608.	3.1	53
42	Phase transformation and grain-boundary segregation in Al-Doped Li7La3Zr2O12 ceramics. Ceramics International, 2021, 47, 22768-22775.	4.8	50
43	Niâ€CeO ₂ Heterostructures in Liâ€5 Batteries: A Balancing Act between Adsorption and Catalytic Conversion of Polysulfide. Advanced Science, 2022, 9, e2105538.	11.2	45
44	Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties. Nano-Micro Letters, 2017, 9, 34.	27.0	42
45	2D Cs ₂ AgBiBr ₆ with Boosted Light–Matter Interaction for Highâ€Performance Photodetectors. Advanced Optical Materials, 2021, 9, 2001930.	7.3	42
46	Co ₃ Se ₄ Quantum Dots as an Ultrastable Host Material for Potassiumâ€ion Intercalation. Advanced Materials, 2021, 33, e2102164.	21.0	40
47	Self-templating construction of N, P-co-doped carbon nanosheets for efficient eletreocatalytic oxygen reduction reaction. Chemical Engineering Journal, 2021, 410, 128015.	12.7	33
48	Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcoholâ€Borax Layer. Angewandte Chemie - International Edition, 2021, 60, 25122-25127.	13.8	32
49	Adsorption and visible-light photocatalytic degradation of organic pollutants by functionalized biochar: Role of iodine doping and reactive species. Environmental Research, 2021, 197, 111026.	7.5	31
50	Recent Advances on Porous Materials for Synergetic Adsorption and Photocatalysis. Energy and Environmental Materials, 2022, 5, 711-730.	12.8	30
51	Insight into Lithium Diffusion in Conversion-Type Iron Oxide Negative Electrode. Journal of Physical Chemistry C, 2015, 119, 919-925.	3.1	29
52	Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Research, 2022, 15, 7180-7189.	10.4	28
53	The effect of Na2S additive in alkaline electrolyte on improved performances of Fe-based air batteries. Electrochimica Acta, 2018, 259, 196-203.	5.2	26
54	Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. Journal of Materials Chemistry A, 2019, 7, 540-548.	10.3	26

#	Article	IF	CITATIONS
55	Band Gap Renormalization, Carrier Multiplication, and Stark Broadening in Photoexcited Black Phosphorus. Nano Letters, 2019, 19, 488-493.	9.1	26
56	Aging-Induced Chemical and Morphological Modifications of Thin Film Iron Oxide Electrodes for Lithium-Ion Batteries. Langmuir, 2014, 30, 3538-3547.	3.5	25
57	Direct Observation of Perovskite Photodetector Performance Enhancement by Atomically Thin Interface Engineering. ACS Applied Materials & Interfaces, 2018, 10, 36493-36504.	8.0	25
58	Lithium Titanate Matrix-Supported Nanocrystalline Silicon Film as an Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 534-540.	8.0	24
59	Chiral Ligand-Induced Structural Transformation of Low-Dimensional Hybrid Perovskite for Circularly Polarized Photodetection. Chemistry of Materials, 2022, 34, 2955-2962.	6.7	24
60	Aqueous Zn2+/Na+ dual-salt batteries with stable discharge voltage and high columbic efficiency by systematic electrolyte regulation. Science China Chemistry, 2022, 65, 399-407.	8.2	23
61	Ternary Si–SiO–Al Composite Films as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34447-34456.	8.0	20
62	Combining Surface Holistic Ge Coating and Subsurface Mg Doping to Enhance the Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 25490-25500.	8.0	20
63	Developing Preparation Craft Platform for Solid Electrolytes Containing Volatile Components: Experimental Study of Competition between Lithium Loss and Densification in Li ₇ La ₃ Zr ₂ O ₁₂ . ACS Applied Materials & amp; Interfaces, 2022 14 33340-3354	8.0	20
64	A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries. Journal of Materials Science and Technology, 2021, 66, 121-127.	10.7	19
65	Bubble-assisted fabrication of hollow CoMoO ₄ spheres for energy storage. Chemical Communications, 2018, 54, 10355-10358.	4.1	18
66	Carbon Supported MoO ₂ Spheres Boosting Ultra table Lithium Storage with High Volumetric Density. Energy and Environmental Materials, 2022, 5, 245-252.	12.8	18
67	Oxygen permeability and structural stability of a novel tantalumâ€doped perovskite BaCo _{0.7} Fe _{0.2} Ta _{0.1} O _{3â^'<i>δ</i>} . AICHE Journal, 2010, 56, 604-610.	3.6	17
68	Nitrogen-doped 3D nanocarbon with nanopore defects as high-capacity and stable anode materials for sodium/lithium-ion batteries. Materials Today Energy, 2020, 16, 100395.	4.7	17
69	Lithiophilic Silver Coating on Lithium Metal Surface for Inhibiting Lithium Dendrites. Frontiers in Chemistry, 2020, 8, 109.	3.6	16
70	A Scalable H ₂ O–DMF–DMSO Solvent Synthesis of Highly Luminescent Inorganic Perovskiteâ€Related Cesium Lead Bromides. Advanced Optical Materials, 2021, 9, 2001435.	7.3	16
71	Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithiumâ€ion Cells. ChemSusChem, 2020, 13, 5571-5579	6.8	14
72	Direct Observation of Band Gap Renormalization in Layered Indium Selenide. ACS Nano, 2019, 13, 13486-13491.	14.6	13

#	Article	IF	CITATIONS
73	Influence of the Organic Chain on the Optical Properties of Two-Dimensional Organic–Inorganic Hybrid Lead Iodide Perovskites. ACS Applied Electronic Materials, 2019, 1, 2253-2259.	4.3	13
74	Hermetically encapsulating sulfur by FePS ₃ flakes for high-performance lithium sulfur batteries. Chemical Communications, 2020, 56, 810-813.	4.1	13
75	Spectroscopy of buried states in black phosphorus with surface doping. 2D Materials, 2020, 7, 035027.	4.4	13
76	Cryogenic engineering of solid polymer electrolytes for room temperature and 4ÂV-class all-solid-state lithium batteries. Chemical Engineering Journal, 2021, 420, 127623.	12.7	13
77	Template growth of perovskites on yarn fibers induced by capillarity for flexible photoelectric applications. Journal of Materials Chemistry C, 2019, 7, 9496-9503.	5.5	12
78	Cerium Oxysulfide with O–Ce–S Bindings for Efficient Adsorption and Conversion of Lithium Polysulfide in Li–S Batteries. Inorganic Chemistry, 2021, 60, 12847-12854.	4.0	12
79	Improving Lithium–Sulfur Batteries' Performance via Inverse Vulcanization of Vinylene-Linked Covalent Organic Frameworks. Energy & Fuels, 2022, 36, 5998-6004.	5.1	12
80	High-Efficiency Sky-Blue Perovskite Light-Emitting Diodes via the Trade-Off between the Electron–Phonon Coupling Loss and Defect Passivation. ACS Photonics, 2022, 9, 2422-2430.	6.6	12
81	Nitrogen, Oxygen and Cobalt multiple-doped graphitized mesoporous carbon as a cost-effective carbon host with high sulfur content for lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 787, 1356-1364.	5.5	11
82	Synergistic Effect of Salinized Quinone for Entrapment of Polysulfides for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 23867-23873.	8.0	11
83	Binary iron-chromium oxide as negative electrode for lithium-ion micro-batteries – spectroscopic and microscopic characterization. Applied Surface Science, 2015, 353, 1170-1178.	6.1	10
84	Controllable nonlinear optical properties of different-sized iron phosphorus trichalcogenide (FePS3) nanosheets. Nanophotonics, 2020, 9, 4555-4564.	6.0	9
85	Suppressing Li Dendrite Puncture with a Hierarchical h-BN Protective Layer. ACS Applied Materials & Interfaces, 2021, 13, 56109-56115.	8.0	9
86	Expanding the ReS ₂ Interlayer Promises High-Performance Potassium-Ion Storage. ACS Applied Materials & Interfaces, 0, , .	8.0	9
87	Networked Spin Cages: Tunable Magnetism and Lithium Ion Storage via Modulation of Spin-Electron Interactions. Inorganic Chemistry, 2016, 55, 9892-9897.	4.0	8
88	Postâ€Treatment of CH ₃ NH ₃ PbI ₃ /PbI ₂ Composite Films with Methylamine to Realize Highâ€Performance Photoconductor Devices. Chemistry - an Asian Journal, 2019, 14, 2861-2868.	3.3	7
89	Staging: Unraveling the Potassium Storage Mechanism in Graphite Foam (Adv. Energy Mater. 22/2019). Advanced Energy Materials, 2019, 9, 1970081.	19.5	5
90	Towards Dendriteâ€Free Potassiumâ€Metal Batteries: Rational Design of a Multifunctional 3D Polyvinyl Alcoholâ€Borax Layer. Angewandte Chemie, 2021, 133, 25326-25331.	2.0	4

#	Article	IF	CITATIONS
91	Phase engineering of Mo-V oxides molecular sieves for zinc-ion batteries. Science China Materials, 2022, 65, 939-946.	6.3	4
92	A Generic Protocol for Highly Reproducible Manufacturing of Efficient Perovskite Lightâ€Emitting Diodes Using Inâ€5itu Photoluminescence Monitoring. Advanced Materials Technologies, 2022, 7, 2100987.	5.8	3
93	Self-Assembly of Monodispersed Closely Packed Composite Superstructures by Anchoring Nanoparticles into Multihierarchical Frameworks. ACS Sustainable Chemistry and Engineering, 2020, 8, 18966-18974.	6.7	1
94	A Scalable H ₂ O–DMF–DMSO Solvent Synthesis of Highly Luminescent Inorganic Perovskiteâ€Related Cesium Lead Bromides (Advanced Optical Materials 3/2021). Advanced Optical Materials, 2021, 9, 2170012.	7.3	1