Tilo Pompe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7903082/publications.pdf

Version: 2024-02-01

136885 175177 3,210 101 32 52 citations h-index g-index papers 107 107 107 4051 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microfluidics-assisted synthesis and functionalization of monodisperse colloidal hydrogel particles for optomechanical biosensors. Journal of Materials Chemistry B, 2022, , .	2.9	3
2	Construction of a 3D brain extracellular matrix model to study the interaction between microglia and T cells in $coae$ culture. European Journal of Neuroscience, 2021, 53, 4034-4050.	1.2	6
3	Fibronectin-functionalization of 3D collagen networks supports immune tolerance and inflammation suppression in human monocyte-derived macrophages. Biomaterials, 2021, 268, 120498.	5.7	16
4	Functional label-free assessment of fibroblast differentiation in 3D collagen-l-matrices using particle image velocimetry. Biomaterials Science, 2021, 9, 5917-5927.	2.6	3
5	Impact of binding mode of low-sulfated hyaluronan to 3D collagen matrices on its osteoinductive effect for human bone marrow stromal cells. Biological Chemistry, 2021, 402, 1465-1478.	1.2	2
6	Fibrillar biopolymer-based scaffolds to study macrophage-fibroblast crosstalk in wound repair. Biological Chemistry, 2021, 402, 1309-1324.	1.2	3
7	Biomimetic estrogen sensor based on soft colloidal probes. Biosensors and Bioelectronics, 2021, 192, 113506.	5.3	7
8	Stiffness Variation of 3D Collagen Networks by Surface Functionalization of Network Fibrils with Sulfonated Polymers. Gels, 2021, 7, 266.	2.1	1
9	Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3D Collagen Matrices. Gels, 2020, 6, 33.	2.1	23
10	Remodeling of Three-Dimensional Collagen I Matrices by Human Bone Marrow Stromal Cells during Osteogenic Differentiation <i>In Vitro</i> ACS Applied Bio Materials, 2020, 3, 6967-6978.	2.3	10
11	Picomolar glyphosate sensitivity of an optical particle-based sensor utilizing biomimetic interaction principles. Biosensors and Bioelectronics, 2020, 165, 112262.	5.3	13
12	Biomimetic tissue models reveal the role of hyaluronan in melanoma proliferation and invasion. Biomaterials Science, 2020, 8, 1405-1417.	2.6	18
13	3D Scaffoldâ€Based Macrophage Fibroblast Coculture Model Reveals ILâ€10 Dependence of Wound Resolution Phase. Advanced Biology, 2020, 4, e1900220.	3.0	23
14	Actin stress fiber dynamics in laterally confined cells. Integrative Biology (United Kingdom), 2019, 11, 175-185.	0.6	5
15	Radial profile detection of multiple spherical particles in contact with interacting surfaces. PLoS ONE, 2019, 14, e0214815.	1.1	7
16	Surface Functionalization by Hydrophobin-EPSPS Fusion Protein Allows for the Fast and Simple Detection of Glyphosate. Biosensors, 2019, 9, 104.	2.3	7
17	Fibril bending stiffness of 3D collagen matrices instructs spreading and clustering of invasive and non-invasive breast cancer cells. Biomaterials, 2019, 193, 47-57.	5.7	71
18	Systems for localized release to mimic paracrine cell communication in vitro. Journal of Controlled Release, 2018, 278, 24-36.	4.8	9

#	Article	IF	CITATIONS
19	Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks. Acta Biomaterialia, 2018, 67, 206-214.	4.1	28
20	Alterations in Cell Mechanics by Actin Cytoskeletal Changes Correlate with Strain-Specific Rubella Virus Phenotypes for Cell Migration and Induction of Apoptosis. Cells, 2018, 7, 136.	1.8	26
21	Biomimetic tumor microenvironments based on collagen matrices. Biomaterials Science, 2018, 6, 2009-2024.	2.6	63
22	Covalent Binding of Maleic Anhydride Copolymer Monolayers to Polyacrylamide Hydrogels. Macromolecular Chemistry and Physics, 2018, 219, 1800206.	1.1	3
23	Instructing Human Macrophage Polarization by Stiffness and Glycosaminoglycan Functionalization in 3D Collagen Networks. Advanced Healthcare Materials, 2017, 6, 1600967.	3.9	124
24	Fibroblast fate regulation by time dependent TGF- \hat{l}^21 and IL-10 stimulation in biomimetic 3D matrices. Biomaterials Science, 2017, 5, 1858-1867.	2.6	51
25	Molecular weight specific impact of soluble and immobilized hyaluronan on CD44 expressing melanoma cells in 3D collagen matrices. Acta Biomaterialia, 2017, 50, 259-270.	4.1	53
26	Quantitative label-free single cell tracking in 3D biomimetic matrices. Scientific Reports, 2017, 7, 14135.	1.6	19
27	Solventâ€Assisted Micromolding of Biohybrid Hydrogels to Maintain Human Hematopoietic Stem and Progenitor Cells Ex Vivo. Advanced Materials, 2017, 29, 1703489.	11.1	21
28	Mimicking Paracrine $TGF\hat{l}^21$ Signals during Myofibroblast Differentiation in 3D Collagen Networks. Scientific Reports, 2017, 7, 5664.	1.6	21
29	Hydrogel Microparticles as Sensors for Specific Adhesion: Case Studies on Antibody Detection and Soil Release Polymers. Gels, 2017, 3, 31.	2.1	10
30	Matrix Growth Factor and Surface Ligand Presentation., 2017,, 215-231.		2
31	Mimicking Tissue Boundaries by Sharp Multiparameter Matrix Interfaces. Advanced Healthcare Materials, 2016, 5, 1861-1867.	3.9	22
32	Tissue Boundaries: Mimicking Tissue Boundaries by Sharp Multiparameter Matrix Interfaces (Adv.) Tj ETQq0 0 0 0	gBJ_JOver	lock 10 Tf 50
33	Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform. Scientific Reports, 2016, 6, 31951.	1.6	29
34	Short-range cytokine gradients to mimic paracrine cell interactions in vitro. Journal of Controlled Release, 2016, 224, 59-68.	4.8	12
35	Polymer hydrogel particles as biocompatible AFM probes to study CD44/hyaluronic acid interactions on cells. Polymer, 2016, 102, 342-349.	1.8	16
36	Distinct impacts of substrate elasticity and ligand affinity on traction force evolution. Soft Matter, 2016, 12, 272-280.	1.2	21

#	Article	IF	Citations
37	Glycosaminoglycan functionalization of mechanically and topologically defined collagen I matrices. Journal of Materials Chemistry B, 2015, 3, 8902-8910.	2.9	31
38	The interplay of fibronectin functionalization and TGF- \hat{l}^21 presence on fibroblast proliferation, differentiation and migration in 3D matrices. Biomaterials Science, 2015, 3, 1291-1301.	2.6	52
39	Space constraints govern fate of hematopoietic stem and progenitor cells inÂvitro. Biomaterials, 2015, 53, 709-715.	5.7	24
40	The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Biomaterials, 2015, 52, 367-375.	5.7	174
41	Quantification of protein–materials interaction by soft colloidal probe spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 3014-3018.	1.3	14
42	Cytoskeletal transition in patterned cells correlates with interfacial energy model. Soft Matter, 2014, 10, 2444-2452.	1.2	8
43	Specific Adhesion of Carbohydrate Hydrogel Particles in Competition with Multivalent Inhibitors Evaluated by AFM. Langmuir, 2014, 30, 6142-6150.	1.6	23
44	Elucidating functional heterogeneity in hematopoietic progenitor cells: A combined experimental and modeling approach. Experimental Hematology, 2014, 42, 826-837.e17.	0.2	6
45	Topologically defined composites of collagen types I and V as in vitro cell culture scaffolds. Acta Biomaterialia, 2014, 10, 2693-2702.	4.1	60
46	Quantification of stem cell / niche interactions by coupling in vivo imaging and in silico simulation. Experimental Hematology, 2013, 41, S31.	0.2	0
47	Dissipative interactions in cell–matrix adhesion. Soft Matter, 2013, 9, 6207.	1.2	24
48	Contactless Laser-Assisted Patterning of Surfaces for Bio-Adhesive Microarrays. Biointerphases, 2012, 7, 35.	0.6	8
49	Nanoscale characterization of cell receptors and binding sites on cell-derived extracellular matrices. Ultramicroscopy, 2012, 118, 44-52.	0.8	7
50	Polymeric Biomaterials for Stem Cell Bioengineering. Macromolecular Rapid Communications, 2012, 33, 1420-1431.	2.0	44
51	Structure and function of ECM-inspired composite collagen type I scaffolds. Soft Matter, 2012, 8, 10200.	1.2	51
52	Tailored Poly(2â€oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion. Macromolecular Bioscience, 2012, 12, 926-936.	2.1	153
53	On the symmetry of siblings: automated single-cell tracking to quantify the behavior of hematopoietic stem cells in a biomimetic setup. Experimental Hematology, 2012, 40, 119-130.e9.	0.2	36
54	The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage. Biomaterials, 2012, 33, 1959-1969.	5.7	28

#	Article	IF	Citations
55	FluidTracks. Informatik Aktuell, 2012, , 57-62.	0.4	1
56	Weakly Coupled Lipid Bilayer Membranes on Multistimuli-Responsive Poly(<i>N</i> -isopropylacrylamide) Copolymer Cushions. Langmuir, 2011, 27, 513-516.	1.6	13
57	Friction-Controlled Traction Force in Cell Adhesion. Biophysical Journal, 2011, 101, 1863-1870.	0.2	35
58	Enzyme Immobilization on Reactive Polymer Films. Methods in Molecular Biology, 2011, 751, 465-476.	0.4	14
59	The impact of heparin intercalation at specific binding sites in telopeptide-free collagen type I fibrils. Biomaterials, 2011, 32, 7444-7453.	5.7	31
60	Extracellular Matrix Functionalized Microcavities to Control Hematopoietic Stem and Progenitor Cell Fate. Macromolecular Bioscience, 2011, 11, 739-747.	2.1	40
61	A new approach to biofunctionalisation and micropatterning of multi-well plates. Biomaterials, 2010, 31, 8802-8809.	5.7	10
62	Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nature Protocols, 2010, 5, 1042-1050.	5.5	50
63	Controlled enhancement of transmembrane enzyme activity in polymer cushioned supported bilayer membranes. Soft Matter, 2010, 6, 5382.	1.2	33
64	Tuneable swelling of thermo- and pH-responsive copolymer films. Soft Matter, 2010, 6, 937.	1,2	14
65	Sulfated glyco-block copolymers with specific receptor and growth factor binding to support cell adhesion and proliferation. Biomaterials, 2009, 30, 1026-1035.	5.7	21
66	The impact of primary and secondary ligand coupling on extracellular matrix characteristics and formation of endothelial capillaries. Biomaterials, 2009, 30, 35-44.	5.7	12
67	Hematopoietic stem and progenitor cells in adhesive microcavities. Integrative Biology (United) Tj ETQq1 1 0.784	1314 rgBT 0.6	/Overlock 10
68	Dissecting the Impact of Matrix Anchorage and Elasticity in Cell Adhesion. Biophysical Journal, 2009, 97, 2154-2163.	0.2	38
69	Biomimetic microcavities based on poly(dimethylsiloxane) elastomers. Soft Matter, 2009, 5, 3505.	1.2	11
70	Structural polymorphism of collagen type I–heparin cofibrils. Soft Matter, 2009, 5, 3461.	1.2	9
71	Electrostatic stretching of grafted maleic acid copolymer chains. EXPRESS Polymer Letters, 2009, 3, 33-38.	1.1	3
72	Sulfated cellulose thin films with antithrombin affinity. EXPRESS Polymer Letters, 2009, 3, 733-742.	1.1	4

#	Article	IF	Citations
73	Spatio-temporal Analysis of Unstained Cells In-vitro. Informatik Aktuell, 2009, , 292-296.	0.4	O
74	Heparin intercalation into reconstituted collagen I fibrils: Impact on growth kinetics and morphology. Biomaterials, 2008, 29, 1-14.	5.7	82
75	Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods, 2008, 5, 645-650.	9.0	190
76	Supported Lipid Bilayers on Spacious and pH-Responsive Polymer Cushions with Varied Hydrophilicity. Journal of Physical Chemistry B, 2008, 112, 6373-6378.	1.2	41
77	Sulfated Glycopolymer Thin Films—Preparation, Characterization, and Biological Activity. Macromolecular Bioscience, 2007, 7, 195-200.	2.1	4
78	Engineered matrix coatings to modulate the adhesion of CD133+ human hematopoietic progenitor cells. Biomaterials, 2007, 28, 836-843.	5.7	66
79	Non-contact printing of proteins on reactive polymer surfaces: a novel route towards structured and graded cell culture carriers. Microfluidics and Nanofluidics, 2007, 3, 629-633.	1.0	7
80	Surface modification of poly(hydroxybutyrate) films to control cell–matrix adhesion. Biomaterials, 2007, 28, 28-37.	5.7	105
81	Modeling of pattern development during fibronectin nanofibril formation. Biointerphases, 2006, 1, 93-97.	0.6	8
82	Benzamidine-based coatings: Implication of inhibitor structure on the inhibition of coagulation enzymes in solution andin vitrohemocompatibility assessment. Biointerphases, 2006, 1, 146-155.	0.6	7
83	Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 2006, , 63-93.	0.4	36
84	Fibronectin at Polymer Surfaces with Graduated Characteristics. , 2006, , 175-198.		4
85	Fibronectin Displacement at Polymer Surfaces. Langmuir, 2005, 21, 4571-4577.	1.6	52
86	Functional Films of Maleic Anhydride Copolymers under Physiological Conditions. Macromolecular Bioscience, 2005, 5, 890-895.	2.1	49
87	Fibronectin fibril pattern displays the force balance of cell–matrix adhesion. European Biophysics Journal, 2005, 34, 1049-1056.	1.2	31
88	Nanoscale Features of Fibronectin Fibrillogenesis Depend on Protein-Substrate Interaction and Cytoskeleton Structure. Biophysical Journal, 2005, 88, 527-534.	0.2	37
89	Quantitative analysis of fibronectin fibrillogenesis by endothelial cells on biomaterials. Journal of Physics Condensed Matter, 2004, 16, S2421-S2426.	0.7	4
90	Modulated Fibronectin Anchorage at Polymer Substrates Controls Angiogenesis. Tissue Engineering, 2004, 10, 841-848.	4.9	42

TILO POMPE

#	Article	IF	CITATION
91	Control of fibronectin displacement on polymer substrates to influence endothelial cell behaviour. Journal of Materials Science: Materials in Medicine, 2004, 15, 387-390.	1.7	18
92	Comparison of flow cytometry and laser scanning cytometry for the analysis of CD34+hematopoietic stem cells., 2004, 57A, 100-107.		9
93	In vitro blood compatibility of polymeric biomaterials through covalent immobilization of an amidine derivative. Biomaterials, 2004, 25, 3493-3501.	5.7	45
94	In Vitro Reconstitution of Fibrillar Collagen Type I Assemblies at Reactive Polymer Surfaces. Biomacromolecules, 2004, 5, 1340-1350.	2.6	61
95	Dynamic Alterations of Fibronectin Layers on Copolymer Substrates with Graded Physicochemical Characteristics. Langmuir, 2004, 20, 2928-2933.	1.6	41
96	Fibronectin anchorage to polymer substrates controls the initial phase of endothelial cell adhesion. Journal of Biomedical Materials Research - Part A, 2003, 67A, 647-657.	2.1	59
97	Quantitative analysis of immobilized proteins and protein mixtures by amino acid analysis. Journal of Chromatography A, 2003, 1005, 113-122.	1.8	46
98	Maleic Anhydride CopolymersA Versatile Platform for Molecular Biosurface Engineering. Biomacromolecules, 2003, 4, 1072-1079.	2.6	223
99	Liquid microstructures at solid interfaces. Journal of Physics Condensed Matter, 2000, 12, 57-74.	0.7	28
100	Nanometer resolution of liquid surface topography by scanning force microscopy. Journal of Adhesion Science and Technology, 1999, 13, 1071-1083.	1.4	20
101	Imaging Soft Surfaces by SFM. , 0, , 201-219.		0