List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7902365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Martian surface radiation environment at solar minimum measured with MSL/RAD. Icarus, 2023, 393, 115035.	2.5	2
2	New operational dose quantity ambient dose H* in the context of galactic cosmic radiation in aviation. Journal of Radiological Protection, 2022, 42, 021520.	1.1	5
3	Directionality of the Martian Surface Radiation and Derivation of the Upward Albedo Radiation. Geophysical Research Letters, 2021, 48, e2021GL093912.	4.0	6
4	Measurement of cosmic radiation in LEO by 1U CubeSat. Radiation Measurements, 2020, 139, 106471.	1.4	4
5	First measurements of the radiation dose on the lunar surface. Science Advances, 2020, 6, .	10.3	84
6	The Lunar Lander Neutron and Dosimetry (LND) Experiment on Chang'E 4. Space Science Reviews, 2020, 216, 1.	8.1	23
7	Radiation in the Atmosphere—A Hazard to Aviation Safety?. Atmosphere, 2020, 11, 1358.	2.3	14
8	Radiation in Space: The Physics. SpringerBriefs in Space Life Sciences, 2020, , 7-43.	0.1	1
9	Measurements of radiation quality factor on Mars with the Mars Science Laboratory Radiation Assessment Detector. Life Sciences in Space Research, 2019, 22, 89-97.	2.3	13
10	The Pivot Energy of Solar Energetic Particles Affecting the Martian Surface Radiation Environment. Astrophysical Journal Letters, 2019, 883, L12.	8.3	6
11	Ready functions for calculating the Martian radiation environment. Journal of Space Weather and Space Climate, 2019, 9, A7.	3.3	12
12	Dose assessment of aircrew: the impact of the weighting factors according to ICRP 103. Journal of Radiological Protection, 2019, 39, 698-706.	1.1	3
13	The German Aerospace Center M-42 radiation detector—A new development for applications in mixed radiation fields. Review of Scientific Instruments, 2019, 90, 125115.	1.3	11
14	A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars. Astronomical Journal, 2018, 155, 49.	4.7	32
15	Characterizing the Variation in Atmospheric Radiation at Aviation Altitudes. , 2018, , 453-471.		3
16	Detecting Upward Directed Charged Particle Fluxes in the Mars Science Laboratory Radiation Assessment Detector. Earth and Space Science, 2018, 5, 2-18.	2.6	6
17	Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure. Planetary and Space Science, 2018, 150, 50-59.	1.7	13
18	Space Weather on the Surface of Mars: Impact of the September 2017 Events. Space Weather, 2018, 16, 1702-1708.	3.7	22

#	Article	IF	CITATIONS
19	Analysis of the Radiation Hazard Observed by RAD on the Surface of Mars During the September 2017 Solar Particle Event. Geophysical Research Letters, 2018, 45, 5845-5851.	4.0	29
20	Energetic Particle Radiation Environment Observed by RAD on the Surface of Mars During the September 2017 Event. Geophysical Research Letters, 2018, 45, 5305-5311.	4.0	29
21	The Solar Particle Event on 10 September 2017 as observed onboard the International Space Station (ISS). Space Weather, 2018, 16, 1173-1189.	3.7	26
22	Solar Cosmic Ray Dose Rate Assessments During GLE 72 Using MIRA and PANDOCA. Space Weather, 2018, 16, 969-976.	3.7	10
23	The Solar Particle Event on 10–13 September 2017: Spectral Reconstruction and Calculation of the Radiation Exposure in Aviation and Space. Space Weather, 2018, 16, 977-986.	3.7	19
24	First Steps Toward the Verification of Models for the Assessment of the Radiation Exposure at Aviation Altitudes During Quiet Space Weather Conditions. Space Weather, 2018, 16, 1269-1276.	3.7	11
25	Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement. Journal of Geophysical Research E: Planets, 2017, 122, 329-341.	3.6	26
26	Assessment of the skin dose for aircrew. Journal of Radiological Protection, 2017, 37, 321-328.	1.1	4
27	The radiation environment on the surface of Mars $\hat{a} \in$ Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS. Life Sciences in Space Research, 2017, 14, 57-63.	2.3	19
28	The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data. Life Sciences in Space Research, 2017, 14, 18-28.	2.3	57
29	The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016. Life Sciences in Space Research, 2017, 14, 3-11.	2.3	29
30	DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016. Journal of Space Weather and Space Climate, 2017, 7, A8.	3.3	44
31	Exploiting different active silicon detectors in the International Space Station: ALTEA and DOSTEL galactic cosmic radiation (GCR) measurements. Journal of Space Weather and Space Climate, 2017, 7, A18.	3.3	10
32	Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars. Annales Geophysicae, 2016, 34, 133-141.	1.6	4
33	CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes. Journal of Space Weather and Space Climate, 2016, 6, A24.	3.3	20
34	DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS). Journal of Space Weather and Space Climate, 2016, 6, A39.	3.3	49
35	The Martian surface radiation environment – a comparison of models and MSL/RAD measurements. Journal of Space Weather and Space Climate, 2016, 6, A13.	3.3	70
36	RaDâ€X: Complementary measurements of dose rates at aviation altitudes. Space Weather, 2016, 14, 689-694.	3.7	13

#	Article	IF	CITATIONS
37	Calibration and Characterization of the Radiation Assessment Detector (RAD) on Curiosity. Space Science Reviews, 2016, 201, 201-233.	8.1	30
38	Influence of cosmic radiation spectrum and its variation on the relative efficiency of LiF thermoluminescent detectors – Calculations and measurements. Radiation Measurements, 2016, 88, 33-40.	1.4	6
39	On determining the zenith angle dependence of the Martian radiation environment at Gale Crater altitudes. Geophysical Research Letters, 2015, 42, 10,557.	4.0	21
40	Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement. Journal of Space Weather and Space Climate, 2015, 5, A17.	3.3	10
41	Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration. Frontiers in Oncology, 2015, 5, 273.	2.8	22
42	A space weather index for the radiation field at aviation altitudes. Journal of Space Weather and Space Climate, 2014, 4, A13.	3.3	28
43	Numerical calculation of the radiation exposure from galactic cosmic rays at aviation altitudes with the PANDOCA core model. Space Weather, 2014, 12, 161-171.	3.7	31
44	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
45	10Be Production in the Atmosphere by Galactic Cosmic Rays. Space Science Reviews, 2013, 176, 333-342.	8.1	2
46	Estimation of Galactic Cosmic Ray exposure inside and outside the Earth's magnetosphere during the recent solar minimum between solar cycles 23 and 24. Advances in Space Research, 2013, 52, 979-987.	2.6	19
47	How Galactic Cosmic Ray models affect the estimation of radiation exposure in space. Advances in Space Research, 2013, 51, 825-834.	2.6	19
48	A ready-to-use galactic cosmic ray model. Advances in Space Research, 2013, 51, 329-338.	2.6	118
49	Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms. Advances in Space Research, 2013, 52, 528-535.	2.6	12
50	Assessment of galactic cosmic ray models. Journal of Geophysical Research, 2012, 117, .	3.3	44
51	Overview of energetic particle hazards during prospective manned missions to Mars. Planetary and Space Science, 2012, 63-64, 123-132.	1.7	34
52	10Be Production in the Atmosphere by Galactic Cosmic Rays. Space Sciences Series of ISSI, 2011, , 333-342.	0.0	0
53	On the importance of the local interstellar spectrum for the solar modulation parameter. Journal of Geophysical Research, 2010, 115, .	3.3	74
54	Dosimetry at aviation altitudes (2006-2008). Radiation Protection Dosimetry, 2009, 136, 251-255.	0.8	30

#	Article	IF	CITATIONS
55	The ground level event 70 on December 13th, 2006 and related effective doses at aviation altitudes. Radiation Protection Dosimetry, 2009, 136, 304-310.	0.8	23
56	Simulation of ALTEA calibration data with PHITS, FLUKA and GEANT4. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 3549-3557.	1.4	5
57	Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. Journal of Geophysical Research, 2009, 114, .	3.3	47
58	Dose calculations at high altitudes and in deep space with GEANT4 using BIC and JQMD models for nucleus–nucleus reactions. New Journal of Physics, 2008, 10, 105019.	2.9	11
59	Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere. Radiation Protection Dosimetry, 2008, 131, 222-228.	0.8	10
60	A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target. Nuclear Physics B, 2007, 765, 31-70.	2.5	203
61	The COMPASS experiment at CERN. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 455-518. The deuteron spin-dependent structure function < mm!math altimg="sil gif" overflow="scroll"	1.6	388
62	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:th="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	4.1	258
63	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.Physics Letters, Long term variations of galactic cosmic radiation on board the International Space Station, on the Moon and on the surface of Mars. Journal of Space Weather and Space Climate, 0, , .	3.3	13