
Barry London

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7902064/publications.pdf Version: 2024-02-01

RADDY LONDON

#	Article	IF	CITATIONS
1	Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics, 2018, 50, 1225-1233.	21.4	552
2	Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nature Communications, 2020, 11, 163.	12.8	466
3	Mutation in Glycerol-3-Phosphate Dehydrogenase 1–Like Gene (<i>GPD1-L</i>) Decreases Cardiac Na ⁺ Current and Causes Inherited Arrhythmias. Circulation, 2007, 116, 2260-2268.	1.6	402
4	Two Isoforms of the Mouse <i>Ether-a-go-go</i> –Related Gene Coassemble to Form Channels With Properties Similar to the Rapidly Activating Component of the Cardiac Delayed Rectifier K ⁺ Current. Circulation Research, 1997, 81, 870-878.	4.5	261
5	Clinical and Molecular Heterogeneity in the Brugada Syndrome. Circulation, 2002, 105, 707-713.	1.6	238
6	Pharmacogenetic Interactions Between β-Blocker Therapy and the Angiotensin-Converting Enzyme Deletion Polymorphism in Patients With Congestive Heart Failure. Circulation, 2001, 103, 1644-1648.	1.6	196
7	Molecular basis of transient outward K+current diversity in mouse ventricular myocytes. Journal of Physiology, 1999, 521, 587-599.	2.9	194
8	Design of a Phase 1/2 Trial of Intracoronary Administration of AAV1/SERCA2a in Patients With Heart Failure. Journal of Cardiac Failure, 2008, 14, 355-367.	1.7	194
9	Enhanced Dispersion of Repolarization and Refractoriness in Transgenic Mouse Hearts Promotes Reentrant Ventricular Tachycardia. Circulation Research, 2000, 86, 396-407.	4.5	167
10	Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovascular Research, 2014, 104, 258-269.	3.8	167
11	Molecular and Functional Characterization of Novel Glycerol-3-Phosphate Dehydrogenase 1–Like Gene (<i>GPD1-L</i>) Mutations in Sudden Infant Death Syndrome. Circulation, 2007, 116, 2253-2259.	1.6	162
12	Functional Consequences of Elimination of <i>I</i> _{to, f} and <i>I</i> _{to, s} . Circulation Research, 2000, 87, 73-79.	4.5	161
13	Omega-3 Fatty Acids and Cardiac Arrhythmias: Prior Studies and Recommendations for Future Research. Circulation, 2007, 116, e320-35.	1.6	155
14	Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Journal of the American College of Cardiology, 2004, 44, 2019-2026.	2.8	149
15	Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltageâ€gated potassium channel Kv1.5. FASEB Journal, 2001, 15, 1801-1803.	0.5	138
16	Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm, 2012, 9, 390-396.	0.7	136
17	Upsurge in T-Wave Alternans and Nonalternating Repolarization Instability Precedes Spontaneous Initiation of Ventricular Tachyarrhythmias in Humans. Circulation, 2006, 113, 2880-2887.	1.6	134
18	Mouse models of long QT syndrome. Journal of Physiology, 2007, 578, 43-53.	2.9	130

#	Article	IF	CITATIONS
19	Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-î±. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1456-H1467.	3.2	122
20	Cardiac Arrhythmias: From (Transgenic) Mice to Men. Journal of Cardiovascular Electrophysiology, 2001, 12, 1089-1091.	1.7	117
21	Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery. Circulation, 2019, 139, 489-501.	1.6	109
22	Calcium-dependent arrhythmias in transgenic mice with heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H431-H441.	3.2	107
23	The transient outward current in mice lacking the potassium channel geneKv1.4. Journal of Physiology, 1998, 509, 171-182.	2.9	106
24	Targeted Replacement of Kv1.5 in the Mouse Leads to Loss of the 4-Aminopyridine–Sensitive Component of <i>I</i> _{K,slow} and Resistance to Drug-Induced QT Prolongation. Circulation Research, 2001, 88, 940-946.	4.5	105
25	Effect of the Asp298Variant of Endothelial Nitric Oxide Synthase on Survival for Patients With Congestive Heart Failure. Circulation, 2003, 107, 1598-1602.	1.6	103
26	Cardiac Na ⁺ Current Regulation by Pyridine Nucleotides. Circulation Research, 2009, 105, 737-745.	4.5	103
27	Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-α. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2098-H2107.	3.2	93
28	Epidemiology and determinants of outcome of admissions for atrial fibrillation in the United States from 1996 to 2001. American Journal of Cardiology, 2004, 94, 500-504.	1.6	92
29	Mechanism of automaticity in cardiomyocytes derived from human induced pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 2015, 81, 81-93.	1.9	92
30	Characterization of a Slowly Inactivating Outward Current in Adult Mouse Ventricular Myocytes. Circulation Research, 1998, 83, 806-814.	4.5	90
31	Survival Benefit of Implantable Cardioverter-Defibrillators in Left Ventricular Assist Device–Supported Heart Failure Patients. Journal of Cardiac Failure, 2012, 18, 140-145.	1.7	82
32	Left Ventricular Diameter and Risk Stratification for Sudden Cardiac Death. Journal of the American Heart Association, 2014, 3, e001193.	3.7	71
33	Cardiac implantable electronic device infections: Who is at greatest risk?. Heart Rhythm, 2017, 14, 839-845.	0.7	70
34	Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2076-H2083.	3.2	67
35	Utilization of implantable cardioverter-defibrillators in survivors of cardiac arrest in the United States from 1996 to 2001. Journal of the American College of Cardiology, 2004, 44, 855-858.	2.8	66
36	Systems Approach to Understanding Electromechanical Activity in the Human Heart. Circulation, 2008, 118, 1202-1211.	1.6	66

#	Article	IF	CITATIONS
37	Genetic susceptibility to atrial fibrillation in patients with congestive heart failure. Heart Rhythm, 2006, 3, 808-812.	0.7	64
38	A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm, 2007, 4, 46-53.	0.7	64
39	Genetics of Atrial Fibrillation. Journal of the American Heart Association, 2018, 7, e009884.	3.7	63
40	Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel. Nature Medicine, 2017, 23, 361-367.	30.7	62
41	Transgenic overexpression of caveolin-3 in the heart induces a cardiomyopathic phenotype. Human Molecular Genetics, 2003, 12, 2777-2788.	2.9	61
42	Renal insufficiency predicts the time to first appropriate defibrillator shock. American Heart Journal, 2006, 151, 852-856.	2.7	59
43	Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction. Nature Communications, 2020, 11, 2542.	12.8	59
44	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	21.4	55
45	Current Perspectives on Coronavirus Disease 2019 and Cardiovascular Disease: A White Paper by the <i>JAHA</i> Editors. Journal of the American Heart Association, 2020, 9, e017013.	3.7	52
46	Inducible polymorphic ventricular tachyarrhythmias in a transgenic mouse model with a long Q-T phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1891-H1898.	3.2	50
47	Homozygous Missense N629D hERG (KCNH2) Potassium Channel Mutation Causes Developmental Defects in the Right Ventricle and Its Outflow Tract and Embryonic Lethality. Circulation Research, 2008, 103, 1483-1491.	4.5	50
48	Ventricular Arrhythmia Risk After Subarachnoid Hemorrhage. Neurocritical Care, 2009, 10, 287-294.	2.4	49
49	Emerging potential benefits of modulating NAD ⁺ metabolism in cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H839-H852.	3.2	47
50	Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT. Journal of Physiology, 2007, 578, 115-129.	2.9	40
51	Presynaptic factors in the regulation of DSI expression in hippocampus. Neuropharmacology, 2002, 43, 550-562.	4.1	39
52	Women and minorities are less likely to receive an implantable cardioverter defibrillator for primary prevention of sudden cardiac death. Europace, 2012, 14, 341-344.	1.7	37
53	Mergla K + channel induces skeletal muscle atrophy by activating the ubiquitin proteasome pathway. FASEB Journal, 2006, 20, 1531-1533.	0.5	34
54	A common variant alters SCN5A–miR-24 interaction and associates with heart failure mortality. Journal of Clinical Investigation, 2018, 128, 1154-1163.	8.2	34

#	Article	IF	CITATIONS
55	Dissection of the voltage-activated potassium outward currents in adult mouse ventricular myocytes: I to,f, I to,s, I K,slow1, I K,slow2, and I ss. Basic Research in Cardiology, 2011, 106, 189-204.	5.9	33
56	Effect of Angiotensin-Converting Enzyme Inhibitors and Receptor Blockers on Appropriate Implantable Cardiac Defibrillator Shock in Patients With Severe Systolic Heart Failure (from the GRADE) Tj ETQq0 0 0 rgBT	/Ovenlæck 1	0 Tɓ50 697 To
57	Transcription Enhancer Factor-1-Related Factor-Transgenic Mice Develop Cardiac Conduction Defects Associated With Altered Connexin Phosphorylation. Circulation, 2004, 110, 2980-2987.	1.6	32
58	Genetics of Sudden Cardiac Death. Current Cardiology Reports, 2015, 17, 606.	2.9	30
59	Myocardial Recovery in Patients With Systolic Heart Failure and Autoantibodies Against β 1 -Adrenergic Receptors. Journal of the American College of Cardiology, 2017, 69, 968-977.	2.8	28
60	Estimated Cardiac Risk Associated With Macrolides and Fluoroquinolones Decreases Substantially When Adjusting for Patient Characteristics and Comorbidities. Journal of the American Heart Association, 2018, 7, .	3.7	28
61	Clinical Importance of ??-Adrenoceptor Polymorphisms in Cardiovascular Disease. Molecular Diagnosis and Therapy, 2002, 2, 73-78.	3.3	27
62	Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-α. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H934-H952.	3.2	27
63	Left Ventricular Dilatation Increases the Risk of Ventricular Arrhythmias in Patients With Reduced Systolic Function. Journal of the American Heart Association, 2015, 4, e001566.	3.7	27
64	Up-Regulation of A-Type Potassium Currents Protects Neurons Against Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1823-1835.	4.3	24
65	Angiotensin Receptor Type 1 Single Nucleotide Polymorphism 1166A/C is Associated With Malignant Arrhythmias and Altered Circulating miR-155 Levels in Patients With Chronic Heart Failure. Journal of Cardiac Failure, 2012, 18, 717-723.	1.7	22
66	Nocturnal Peak in Atrial Tachyarrhythmia Occurrence as a Function of Arrhythmia Burden. Journal of Cardiovascular Electrophysiology, 2012, 23, 604-611.	1.7	19
67	Knockin Animal Models of Inherited Arrhythmogenic Diseases: What Have We Learned From Them?. Journal of Cardiovascular Electrophysiology, 2007, 18, 1117-1125.	1.7	18
68	Dual-Dye Optical Mapping after Myocardial Infarction: Does the Site of Ventricular Stimulation Alter the Properties of Electrical Propagation?. Journal of Cardiovascular Electrophysiology, 2008, 19, 197-202.	1.7	18
69	Meta-Analysis of Trials on Prophylactic Use of Levosimendan in Patients Undergoing Cardiac Surgery. Annals of Thoracic Surgery, 2018, 105, 1403-1410.	1.3	18
70	CFTR Heterozygotes Are at Increased Risk of Respiratory Infections: A Population-Based Study. Open Forum Infectious Diseases, 2018, 5, ofy219.	0.9	18
71	Temporal Trends and Clinical Outcomes of Transcatheter Aortic Valve Replacement in Nonagenarians. Journal of the American Heart Association, 2019, 8, e013685.	3.7	17
72	Statins Decrease Oxidative Stress and ICD Therapies. Cardiology Research and Practice, 2010, 2010, 1-7.	1.1	16

#	Article	IF	CITATIONS
73	Effect of Right Ventricular Versus Biventricular Pacing on Electrical Remodeling in the Normal Heart. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 79-87.	4.8	16
74	Prevention of adverse electrical and mechanical remodeling with biventricular pacing in a rabbit model of myocardial infarction. Heart Rhythm, 2008, 5, 124-130.	0.7	15
75	Arrhythmia phenotype in mouse models of human long QT. Journal of Interventional Cardiac Electrophysiology, 2009, 24, 77-87.	1.3	15
76	Interaction of Implantable Defibrillator Therapy with Angiotensin onverting Enzyme Deletion/Insertion Polymorphism. Journal of Cardiovascular Electrophysiology, 2004, 15, 1162-1166.	1.7	13
77	Adrenergic stimulation promotes T-wave alternans and arrhythmia inducibility in a TNF-α genetic mouse model of congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H440-H450.	3.2	13
78	Whither Art Thou, SCN10A, and What Art Thou Doing?. Circulation Research, 2012, 111, 268-270.	4.5	13
79	Evaluation of potential ionizing irradiation protectors and mitigators using clonogenic survival of human umbilical cord blood hematopoietic progenitor cells. Experimental Hematology, 2013, 41, 957-966.	0.4	13
80	Autonomic Blockade Unmasks Maturational Differences in Rate-Dependent Atrioventricular Nodal Conduction and Facilitation in the Mouse. Journal of Cardiovascular Electrophysiology, 2003, 14, 191-195.	1.7	11
81	Modulation of the cardiac sodium channel NaV1.5 peak and late currents by NAD+ precursors. Journal of Molecular and Cellular Cardiology, 2020, 141, 70-81.	1.9	11
82	The genomics of heart failure: design and rationale of the HERMES consortium. ESC Heart Failure, 2021, 8, 5531-5541.	3.1	11
83	Effect of the TNF-α–promoter polymorphism on cardiac allograft rejection. Journal of Heart and Lung Transplantation, 2004, 23, 696-700.	0.6	9
84	Immunosuppression Decreases Inflammation and Increases AAV6-hSERCA2a-Mediated SERCA2a Expression. Human Gene Therapy, 2012, 23, 722-732.	2.7	9
85	Cardiac levels of NOS1AP RNA from right ventricular tissue recovered during lead extraction. Heart Rhythm, 2012, 9, 399-404.	0.7	9
86	Losartan for Preventing Aortic Root Dilatation in Patients with Marfan Syndrome: A Meta-Analysis of Randomized Trials. Cardiology and Therapy, 2019, 8, 365-372.	2.6	8
87	Serum amine-based metabolites and their association with outcomes in primary prevention implantable cardioverter-defibrillator patients. Europace, 2016, 18, 1383-1390.	1.7	7
88	Letter by London Regarding Article, "Reappraisal of Reported Genes for Sudden Arrhythmic Death: Evidence-Based Evaluation of Gene Validity for Brugada Syndrome― Circulation, 2019, 139, 1758-1759.	1.6	7
89	Detecting instabilities of cardiac rhythm. Journal of Electrocardiology, 2003, 36, 219-226.	0.9	6
90	The many faces of repolarization instability: which one is prognostic?. Journal of Electrocardiology, 2009. 42. 511-516.	0.9	6

#	Article	IF	CITATIONS
91	Targeting Device Therapy: Genomics of Sudden Death. Heart Failure Clinics, 2010, 6, 93-100.	2.1	6
92	Nighttime instabilities of neurophysiological, cardiovascular, and respiratory activity: integrative modeling and preliminary results. Journal of Electrocardiology, 2015, 48, 1010-1016.	0.9	6
93	Mouse Models of Cardiac Arrhythmias. , 2004, , 433-443.		6
94	A second ACE of hearts. Journal of Molecular and Cellular Cardiology, 2003, 35, 1009-1010.	1.9	5
95	Cardiac Autonomic Modulation by Estrogen in Female Mice Undergoing Ambulatory Monitoring and In Vivo Electrophysiologic Testing. Annals of Noninvasive Electrocardiology, 2004, 9, 142-148.	1.1	5
96	The microRNAâ€204â€5p inhibits APJ signalling and confers resistance to cardiac hypertrophy and dysfunction. Clinical and Translational Medicine, 2022, 12, e693.	4.0	5
97	Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. Journal of the American Heart Association, 2022, 11, .	3.7	5
98	Defining the Complexity of the Junctional Membrane Complex. Circulation Research, 2017, 120, 11-12.	4.5	4
99	High-energy external defibrillation and transcutaneous pacing during MRI: feasibility and safety. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 47.	3.3	4
100	Functional role of endogenous Kv1.4 in experimental demyelination. Journal of Neuroimmunology, 2020, 343, 577227.	2.3	4
101	Use of Transgenic and Gene-Targeted Mice to Study K+Channel Function in the Cardiovascular System. , 2001, , 177-191.		4
102	GWAS Applied to Heart Failure. Circulation: Cardiovascular Genetics, 2010, 3, 226-228.	5.1	3
103	Reversible lysine acetylation: Another layer of post-translational regulation of the cardiac sodium channel. Channels, 2017, 11, 360-361.	2.8	3
104	Immune Modulation of Cardiac Arrhythmias. Circulation Research, 2017, 121, 11-12.	4.5	3
105	Diversity, Equity, and Inclusiveness in Medicine and Cardiology. Journal of the American Heart Association, 2020, 9, e014592.	3.7	3
106	Amiodarone and Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2007, 18, 1321-1322.	1.7	2
107	Understanding Cardiac Calcium Channelopathies. Circulation, 2008, 118, 2221-2222.	1.6	2
108	FISHing for Answers in Postoperative Atrial Fibrillation. Journal of the American Heart Association, 2012, 1, e002931.	3.7	2

#	Article	IF	CITATIONS
109	Magnetic resonance imaging of contracting ultrathin cardiac tissue. Biomedical Physics and Engineering Express, 2019, 5, 045003.	1.2	2
110	Outcomes of Surgical Ablation in Patients With Atrial Fibrillation Undergoing Cardiac Surgeries. Annals of Thoracic Surgery, 2019, 107, 1395-1400.	1.3	2
111	Reviewing Peer Review. Journal of the American Heart Association, 2021, 10, e021475.	3.7	2
112	Staying Connected Without Connexin43. Circulation Research, 2004, 95, 120-121.	4.5	1
113	Adrenergic stimulation promotes T-wave alternans in a TNF-α genetic mouse model of congestive heart failure. Heart Rhythm, 2005, 2, S142-S143.	0.7	1
114	CaM Kinase Inhibition. Circulation Research, 2006, 99, 1027-1028.	4.5	1
115	A Precondition for Arrhythmias. Journal of Cardiovascular Electrophysiology, 2007, 18, 100-101.	1.7	1
116	Searching for Sudden Death SNPs in Calcium Handling Genes. Journal of the American Heart Association, 2013, 2, e000541.	3.7	1
117	Isolated right ventricular failure and abnormal hemodynamics caused by right ventricular pacing are reversed with cardiac resynchronization therapy. HeartRhythm Case Reports, 2015, 1, 182-185.	0.4	1
118	Diversity, Equity, and Inclusiveness in Medicine and Cardiology: Next Steps for JAHA. Journal of the American Heart Association, 2020, 9, e019307.	3.7	1
119	Ciliary Genes Causing Transposition of the Great Arteries? Not Silly at All. Circulation Research, 2020, 126, 822-823.	4.5	1
120	Taking the Gender Gap to Heart. Circulation Research, 2001, 89, 378-379.	4.5	1
121	Recent advances in the Laboratory of Molecular and Cellular Cardiology. Annals of Thoracic Surgery, 1995, 60, S509-S512.	1.3	О
122	Transgenic overexpression of caveolin-3 in the heart induces a cardiomyopathic phenotype. Human Molecular Genetics, 2003, 13, 149-149.	2.9	0
123	Fatty Acid Metabolism and Arrhythmias. Journal of Cardiovascular Electrophysiology, 2004, 15, 1317-1318.	1.7	0
124	What Is the Mechanism of This Wide-Complex Tachycardia? More Questions Than Answers. PACE - Pacing and Clinical Electrophysiology, 2005, 28, 149-151.	1.2	0
125	To The Editor—Response. Heart Rhythm, 2006, 3, 1395.	0.7	0
126	Response to Letter Regarding Article, "Upsurge in T-Wave Alternans and Nonalternating Repolarization Instability Precedes Spontaneous Initiation of Ventricular Tachyarrhythmias in Humans― Circulation, 2007, 115, .	1.6	0

#	Article	IF	CITATIONS
127	Reconciling computer models and stem cell models of human cardiac repolarization: reply. Cardiovascular Research, 2015, 106, 6-7.	3.8	о
128	United We Stand; Divided We Fibrillate?. Circulation Research, 2017, 121, 1302-1303.	4.5	0
129	Reply. Annals of Thoracic Surgery, 2018, 106, 1590-1591.	1.3	Ο
130	Catecholaminergic Polymorphic (Right)ÂVentricular Tachycardia?. JACC: Clinical Electrophysiology, 2019, 5, 128-130.	3.2	0
131	Recurrent exercise-induced ventricular tachycardia in a patient with Brugada syndrome. HeartRhythm Case Reports, 2021, 7, 144-147.	0.4	Ο
132	IDENTIFYING NEW SUDDEN DEATH GENES. Transactions of the American Clinical and Climatological Association, 2018, 129, 183-184.	0.5	0