Noora Kotaja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7900883/publications.pdf

Version: 2024-02-01

136950 144013 4,609 61 32 57 h-index citations g-index papers 61 61 61 4673 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Testicular "Inherited Metabolic Memory―of Ancestral High-Fat Diet Is Associated with Sperm sncRNA Content. Biomedicines, 2022, 10, 909.	3.2	8
2	Widespread formation of double-stranded RNAs in testis. Genome Research, 2021, 31, 1174-1186.	5 . 5	6
3	Single-Cell Proteomics Reveals the Defined Heterogeneity of Resident Macrophages in White Adipose Tissue. Frontiers in Immunology, 2021, 12, 719979.	4.8	24
4	DICER regulates the expression of major satellite repeat transcripts and meiotic chromosome segregation during spermatogenesis. Nucleic Acids Research, 2020, 48, 7135-7153.	14.5	15
5	Small Non-Coding RNAs and Epigenetic Inheritance. , 2020, , 209-230.		1
6	Transillumination-Assisted Dissection of Specific Stages of the Mouse Seminiferous Epithelial Cycle for Downstream Immunostaining Analyses. Journal of Visualized Experiments, 2020, , .	0.3	8
7	Enrichment of Pachytene Spermatocytes and Spermatids from Mouse Testes Using Standard Laboratory Equipment. Journal of Visualized Experiments, 2019, , .	0.3	11
8	Transcription Factor USF1 Is Required for Maintenance of Germline Stem Cells in Male Mice. Endocrinology, 2019, 160, 1119-1136.	2.8	16
9	Lack of androgen receptor SUMOylation results in male infertility due to epididymal dysfunction. Nature Communications, 2019, 10, 777.	12.8	15
10	Cilia-related protein SPEF2 regulates osteoblast differentiation. Scientific Reports, 2018, 8, 859.	3.3	22
11	Germ granule-mediated RNA regulation in male germ cells. Reproduction, 2018, 155, R77-R91.	2.6	45
12	Exonuclease Domain-Containing 1 Enhances MIWI2 piRNA Biogenesis via Its Interaction with TDRD12. Cell Reports, 2018, 24, 3423-3432.e4.	6.4	17
13	Hydroxysteroid $(17\hat{1}^2)$ dehydrogenase 1 expressed by Sertoli cells contributes to steroid synthesis and is required for male fertility. FASEB Journal, 2018, 32, 3229-3241.	0.5	14
14	SPEF2 functions in microtubule-mediated transport in elongating spermatids. Development (Cambridge), 2017, 144, 2683-2693.	2.5	51
15	FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy, 2017, 13, 302-321.	9.1	19
16	The Genetics of Postmeiotic Male Germ Cell Differentiation from Round Spermatids to Mature Sperm. Monographs in Human Genetics, 2017, , 101-115.	0.5	0
17	SPEF2 functions in microtubule-mediated transport in elongating spermatids to ensure proper male germ cell differentiation. Journal of Cell Science, 2017, 130, e1.2-e1.2.	2.0	1
18	piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes and Development, 2015, 29, 1032-1044.	5.9	220

#	Article	IF	CITATIONS
19	DICER Regulates the Formation and Maintenance of Cell-Cell Junctions in the Mouse Seminiferous Epithelium1. Biology of Reproduction, 2015, 93, 139.	2.7	27
20	microRNA in Human Reproduction. Advances in Experimental Medicine and Biology, 2015, 888, 353-387.	1.6	27
21	KIF1-binding protein interacts with KIF3A in haploid male germ cells. Reproduction, 2015, 150, 209-216.	2.6	9
22	Retromer vesicles interact with RNA granules in haploid male germ cells. Molecular and Cellular Endocrinology, 2015, 401, 73-83.	3.2	6
23	An atlas of chromatoid body components. Rna, 2014, 20, 483-495.	3.5	92
24	MicroRNAs and spermatogenesis. Fertility and Sterility, 2014, 101, 1552-1562.	1.0	232
25	Small RNAs in spermatogenesis. Molecular and Cellular Endocrinology, 2014, 382, 498-508.	3.2	108
26	Isolation of Chromatoid Bodies from Mouse Testis as a Rich Source of Short RNAs. Methods in Molecular Biology, 2014, 1173, 11-25.	0.9	15
27	Germ Cell-Specific Targeting of DICER or DGCR8 Reveals a Novel Role for Endo-siRNAs in the Progression of Mammalian Spermatogenesis and Male Fertility. PLoS ONE, 2014, 9, e107023.	2.5	70
28	KIF3A is essential for sperm tail formation and manchette function. Molecular and Cellular Endocrinology, 2013, 377, 44-55.	3.2	92
29	Epigenetic Regulation of Male Germ Cell Differentiation. Sub-Cellular Biochemistry, 2013, 61, 119-138.	2.4	27
30	Transcriptome Profiling of the Murine Testis during the First Wave of Spermatogenesis. PLoS ONE, 2013, 8, e61558.	2.5	115
31	The RNA Binding Protein SAM68 Transiently Localizes in the Chromatoid Body of Male Germ Cells and Influences Expression of Select MicroRNAs. PLoS ONE, 2012, 7, e39729.	2.5	16
32	Dicer Is Required for Haploid Male Germ Cell Differentiation in Mice. PLoS ONE, 2011, 6, e24821.	2.5	139
33	Dicer1 Depletion in Male Germ Cells Leads to Infertility Due to Cumulative Meiotic and Spermiogenic Defects. PLoS ONE, 2011, 6, e25241.	2.5	130
34	Loss of SPEF2 Function in Mice Results in Spermatogenesis Defects and Primary Ciliary Dyskinesia1. Biology of Reproduction, 2011, 85, 690-701.	2.7	118
35	Chromatoid body and small RNAs in male germ cells. Reproduction, 2011, 142, 195-209.	2.6	141
36	Accumulation of piRNAs in the chromatoid bodies purified by a novel isolation protocol. Experimental Cell Research, 2010, 316, 1567-1575.	2.6	38

#	Article	IF	Citations
37	Expression of SPEF2 During Mouse Spermatogenesis and Identification of IFT20 as an Interacting Protein1. Biology of Reproduction, 2010, 82, 580-590.	2.7	74
38	miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development (Cambridge), 2010, 137, 3177-3184.	2.5	107
39	Fhl5/Act, a CREM-binding transcriptional activator required for normal sperm maturation and morphology, is not essential for testicular gene expression. Reproductive Biology and Endocrinology, 2009, 7, 133.	3.3	14
40	Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11224-11229.	7.1	66
41	Differential Functions of the Aurora-B and Aurora-C Kinases in Mammalian Spermatogenesis. Molecular Endocrinology, 2007, 21, 726-739.	3.7	150
42	The chromatoid body: a germ-cell-specific RNA-processing centre. Nature Reviews Molecular Cell Biology, 2007, 8, 85-90.	37.0	265
43	The Chromatoid Body and microRNA Pathways in Male Germ Cells. , 2007, , 199-209.		1
44	Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells. Journal of Cell Science, 2006, 119, 2819-2825.	2.0	120
45	The chromatoid body of male germ cells: Similarity with processing bodies and presence of Dicer and microRNA pathway components. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2647-2652.	7.1	326
46	Microtubule-independent and Protein Kinase A-mediated Function of Kinesin KIF17b Controls the Intracellular Transport of Activator of CREM in Testis (ACT). Journal of Biological Chemistry, 2005, 280, 31739-31745.	3.4	41
47	Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2808-2813.	7.1	180
48	FLI-1 Functionally Interacts with PIASx \hat{l}_{\pm} , a Member of the PIAS E3 SUMO Ligase Family. Journal of Biological Chemistry, 2005, 280, 38035-38046.	3.4	17
49	Abnormal sperm in mice with targeted deletion of the act (activator of cAMP-responsive element) Tj ETQq1 1 0.7 America, 2004, 101, 10620-10625.	'84314 rgl 7.1	BT /Overlock 76
50	Testis-specific transcription mechanisms promoting male germ-cell differentiation. Reproduction, 2004, 128, 5-12.	2.6	139
51	Specialized rules of gene transcription in male germ cells: the CREM paradigm*. Journal of Developmental and Physical Disabilities, 2004, 27, 322-327.	3.6	27
52	Plzf pushes stem cells. Nature Genetics, 2004, 36, 551-553.	21.4	26
53	Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nature Methods, 2004, 1, 249-254.	19.0	175
54	A specific programme of gene transcription in male germ cells. Reproductive BioMedicine Online, 2004, 8, 496-500.	2.4	23

#	ARTICLE	IF	CITATION
55	PIAS proteins promote SUMO-1 conjugation to STAT1. Blood, 2003, 102, 3311-3313.	1.4	135
56	PIAS Proteins Modulate Transcription Factors by Functioning as SUMO-1 Ligases. Molecular and Cellular Biology, 2002, 22, 5222-5234.	2.3	364
57	Androgen Receptor-interacting Protein 3 and Other PIAS Proteins Cooperate with Glucocorticoid Receptor-interacting Protein 1 in Steroid Receptor-dependent Signaling. Journal of Biological Chemistry, 2002, 277, 17781-17788.	3.4	57
58	The Nuclear Receptor Interaction Domain of GRIP1 Is Modulated by Covalent Attachment of SUMO-1. Journal of Biological Chemistry, 2002, 277, 30283-30288.	3 . 4	121
59	ARIP3 (Androgen Receptor-Interacting Protein 3) and Other PIAS (Protein Inhibitor of Activated STAT) Proteins Differ in Their Ability to Modulate Steroid Receptor-Dependent Transcriptional Activation. Molecular Endocrinology, 2000, 14, 1986-2000.	3.7	144
60	ARIP3 (Androgen Receptor-Interacting Protein 3) and Other PIAS (Protein Inhibitor of Activated STAT) Proteins Differ in Their Ability to Modulate Steroid Receptor-Dependent Transcriptional Activation. Molecular Endocrinology, 2000, 14, 1986-2000.	3.7	64
61	Small RNAs in spermatogenesis. Endocrine Abstracts, 0, , .	0.0	2