List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7899171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutualistic relationship between <i>Nitrospira</i> and concomitant heterotrophs. Environmental Microbiology Reports, 2022, 14, 130-137.	2.4	5
2	Biological methane production coupled with sulfur oxidation in a microbial electrosynthesis system without organic substrates. Journal of Environmental Sciences, 2022, 116, 68-78.	6.1	11
3	Environmental Factors Affecting the Community of Methane-oxidizing Bacteria. Microbes and Environments, 2022, 37, n/a.	1.6	4
4	Recent Progress in Cutting-edge Monitoring Tools for Microbiomes in Engineered Systems. Journal of Japan Society on Water Environment, 2022, 45, 91-105.	0.4	0
5	Growth of nitriteâ€oxidizing <i>Nitrospira</i> and ammoniaâ€oxidizing <i>Nitrosomonas</i> in marine recirculating trickling biofilter reactors. Environmental Microbiology, 2022, 24, 3735-3750.	3.8	4
6	Metabolic Potential of the Superphylum <i>Patescibacteria</i> Reconstructed from Activated Sludge Samples from a Municipal Wastewater Treatment Plant. Microbes and Environments, 2022, 37, n/a.	1.6	11
7	Treatment of landfill leachate with different techniques: an overview. Journal of Water Reuse and Desalination, 2021, 11, 66-96.	2.3	63
8	Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms. Frontiers in Microbiology, 2021, 12, 537194.	3.5	8
9	Performance optimization of a chitosan/anammox reactor in nitrogen removal from synthetic wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105252.	6.7	8
10	Reactor performance and microbial community structure of single-stage partial nitritation anammox membrane bioreactors inoculated with Brocadia and Scalindua enrichment cultures. Biochemical Engineering Journal, 2021, 170, 107991.	3.6	12
11	Effects of Recirculating Aquaculture System Wastewater on Anammox Performance and Community Structure. Processes, 2021, 9, 1183.	2.8	3
12	Photodegradation of fragrance materials and triclosan in water: Direct photolysis and photosensitized degradation. Environmental Technology and Innovation, 2021, 23, 101766.	6.1	14
13	Bioelectrical Methane Production with an Ammonium Oxidative Reaction under the No Organic Substance Condition. Microbes and Environments, 2021, 36, n/a.	1.6	8
14	Cometabolism of the Superphylum Patescibacteria with Anammox Bacteria in a Long-Term Freshwater Anammox Column Reactor. Water (Switzerland), 2021, 13, 208.	2.7	51
15	Integrated anammox-biochar in synthetic wastewater treatment: Performance and optimization by artificial neural network. Journal of Cleaner Production, 2020, 243, 118638.	9.3	52
16	Mn(II) oxidation and manganese-oxide reduction on the decolorization of an azo dye. International Biodeterioration and Biodegradation, 2020, 146, 104820.	3.9	11
17	Multiple organic substrates support Mn(II) removal with enrichment of Mn(II)-oxidizing bacteria. Journal of Environmental Management, 2020, 259, 109771.	7.8	17
18	PAHs emission source analysis for air and water environments by isomer ratios — Comparison by modified Cohen's d. Science of the Total Environment, 2020, 715, 136831.	8.0	5

#	Article	IF	CITATIONS
19	Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere, 2020, 253, 126646.	8.2	200
20	Anti-bacterial Effects of MnO ₂ on the Enrichment of Manganese-oxidizing Bacteria in Downflow Hanging Sponge Reactors. Microbes and Environments, 2020, 35, n/a.	1.6	7
21	Stormwater inflow loading of polycyclic aromatic hydrocarbons into urban domestic wastewater treatment plant for separate sewer system. Water Science and Technology, 2019, 79, 1426-1436.	2.5	11
22	Cross-linked chitosan/zeolite as a fixed-bed column for organic micropollutants removal from aqueous solution, optimization with RSM and artificial neural network. Journal of Environmental Management, 2019, 250, 109434.	7.8	45
23	Degradation and volatilization process of fragrance materials and triclosan in wastewater treatment plant – Comparison between field survey and laboratory experiment –. Environmental Technology and Innovation, 2019, 16, 100438.	6.1	4
24	Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 2019, 696, 133971.	8.0	320
25	Dual nitrogen and oxygen isotope fractionation during anaerobic ammonium oxidation by anammox bacteria. ISME Journal, 2019, 13, 2426-2436.	9.8	35
26	Integrated biological–physical process for biogas purification effluent treatment. Journal of Environmental Sciences, 2019, 83, 110-122.	6.1	6
27	Investigation of prospective factors that control Kouleothrix (Type 1851) filamentous bacterial abundance and their correlation with sludge settleability in full-scale wastewater treatment plants. Chemical Engineering Research and Design, 2019, 124, 137-142.	5.6	19
28	Biogas purification performance of new water scrubber packed with sponge carriers. Journal of Cleaner Production, 2019, 214, 103-111.	9.3	38
29	Draft Genome Sequence of Mn(II)-Oxidizing Pseudomonas resinovorans Strain MO-1. Genome Announcements, 2018, 6, .	0.8	1
30	Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater. Water Research, 2018, 130, 224-233.	11.3	44
31	Effects of Salts on the Activity and Growth of " <i>Candidatus</i> Scalindua sp.â€, a Marine Anammox Bacterium. Microbes and Environments, 2018, 33, 336-339.	1.6	9
32	Pollutant Removal from Synthetic Aqueous Solutions with a Combined Electrochemical Oxidation and Adsorption Method. International Journal of Environmental Research and Public Health, 2018, 15, 1443.	2.6	17
33	Specificities and Efficiencies of Primers Targeting Candidatus Phylum Saccharibacteria in Activated Sludge. Materials, 2018, 11, 1129.	2.9	22
34	Pollutants removal from synthetic wastewater by the combined electrochemical, adsorption and sequencing batch reactor (SBR). Ecotoxicology and Environmental Safety, 2018, 161, 137-144.	6.0	23
35	Genetic diversity of marine anaerobic ammoniumâ€oxidizing bacteria as revealed by genomic and proteomic analyses of â€~ <i>Candidatus</i> Scalindua japonica'. Environmental Microbiology Reports, 2017, 9, 550-561.	2.4	29
36	Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process. Chemical Engineering Research and Design, 2017, 111, 253-262.	5.6	53

#	Article	IF	CITATIONS
37	Loading and removal of PAHs, fragrance compounds, triclosan and toxicity by composting process from sewage sludge. Science of the Total Environment, 2017, 605-606, 860-866.	8.0	23
38	Dominant <i>Candidatus</i> Accumulibacter phosphatis Enriched in Response to Phosphate Concentrations in EBPR Process. Microbes and Environments, 2017, 32, 260-267.	1.6	17
39	Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiology Ecology, 2016, 92, fiw078.	2.7	155
40	Effects of organic matter in livestock manure digester liquid on microbial community structure and in situ activity of anammox granules. Chemosphere, 2016, 159, 300-307.	8.2	29
41	Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor. Water Research, 2016, 102, 147-157.	11.3	106
42	Nitrogen removal using an anammox membrane bioreactor at low temperature. Water Science and Technology, 2015, 72, 2148-2153.	2.5	31
43	Biomass Yield Efficiency of the Marine Anammox Bacterium, " <i>Candidatus</i> Scalindua sp.,―is Affected by Salinity. Microbes and Environments, 2015, 30, 86-91.	1.6	34
44	PAH contents in road dust on principal roads collected nationwide in Japan and their influential factors. Water Science and Technology, 2015, 72, 1062-1071.	2.5	12
45	PAH diagnostic ratio analysis in atmospheric and aquatic environments for the pollution emission source identification. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2015, 71, III_151-III_159.	0.1	0
46	Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants. PLoS ONE, 2015, 10, e0136424.	2.5	8
47	Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system. Water Research, 2015, 80, 337-345.	11.3	59
48	Biological oxidation of Mn(II) coupled with nitrification for removal and recovery of minor metals by downflow hanging sponge reactor. Water Research, 2015, 68, 545-553.	11.3	59
49	Physiological characterization of anaerobic ammonium oxidizing bacterium â€~ <scp><i>C</i></scp> <i>andidatus</i> â€ <scp>J</scp> ettenia caeni'. Environmental Microbiology, 2015, 2172-2189.	13.8	203
50	METABOLIC ACTIVITY OF MARINE ANAMMOX BACTERIA USING HEAVY METALS AND SULFATE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2014, 70, III_251-III_256.	0.1	0
51	Phosphate recovery as concentrated solution from treated wastewater by a PAO-enriched biofilm reactor. Water Research, 2013, 47, 2025-2032.	11.3	58
52	Physiological Characterization of an Anaerobic Ammonium-Oxidizing Bacterium Belonging to the "Candidatus Scalindua―Group. Applied and Environmental Microbiology, 2013, 79, 4145-4148.	3.1	127
53	High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants. Environmental Microbiology, 2013, 15, 1821-1831.	3.8	36
54	Polyphosphate-accumulating organisms capable of living under high salinity environment. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2013, 69, III_523-III_530.	0.1	0

#	Article	IF	CITATIONS
55	Cultivation of Planktonic Anaerobic Ammonium Oxidation (Anammox) Bacteria Using Membrane Bioreactor. Microbes and Environments, 2013, 28, 436-443.	1.6	59
56	Development of anammox reactor equipped with a degassing membrane to improve biomass retention. Water Science and Technology, 2012, 66, 451-456.	2.5	9
57	PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments. Water Science and Technology, 2012, 66, 983-992.	2.5	11
58	Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Science and Technology, 2012, 66, 2556-2561.	2.5	280
59	Photocatalytic Decomposition of Atmospheric Toxic Substances on the TiO2-loaded Glasses Set on the Roadside of a Highway. Journal of Water and Environment Technology, 2012, 10, 399-408.	0.7	Ο
60	Anaerobic treatment of municipal wastewater at ambient temperature: Analysis of archaeal community structure and recovery of dissolved methane. Water Research, 2012, 46, 5756-5764.	11.3	121
61	Influence of temperature and salinity on microbial structure of marine anammox bacteria. Water Science and Technology, 2012, 66, 958-964.	2.5	30
62	A Polyphasic Approach to Study Ecophysiology of Complex Multispecies Nitrifying Biofilms. Methods in Enzymology, 2011, 496, 163-184.	1.0	8
63	Enrichment Using an Up-flow Column Reactor and Community Structure of Marine Anammox Bacteria from Coastal Sediment. Microbes and Environments, 2011, 26, 67-73.	1.6	69
64	Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment. Bioresource Technology, 2011, 102, 10299-10304.	9.6	53
65	Enrichment and identification of methane-oxidizing bacteria by using down-flow hanging sponge bioreactors under low methane concentration. Annals of Microbiology, 2011, 61, 683-687.	2.6	4
66	Enrichment of marine anammox bacteria in Hiroshima Bay sediments. Water Science and Technology, 2011, 63, 964-969.	2.5	22
67	Nitro-PAHs and PAHs in Atmospheric Particulate Matters and Sea Sediments in Hiroshima Bay Area, Japan. Water, Air, and Soil Pollution, 2010, 207, 263-271.	2.4	35
68	Modelling of wet deposition of atmospheric polycyclic aromatic hydrocarbons by the consecutive measurements in an urban area, Japan. Water Science and Technology, 2010, 62, 1922-1930.	2.5	5
69	Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor. Water Research, 2010, 44, 1409-1418.	11.3	106
70	Estimation of river discharge loadings of PAHs in a suburban river in Hiroshima Prefecture, Japan. Journal of Water and Environment Technology, 2009, 7, 109-120.	0.7	9
71	In Situ Activity and Spatial Organization of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in Biofilms. Applied and Environmental Microbiology, 2007, 73, 4931-4939.	3.1	144
72	Estimation of the emission factors of PAHs by traffic with the model of atmospheric dispersion and deposition from heavy traffic road. Water Science and Technology, 2007, 56, 233-242.	2.5	6

#	Article	IF	CITATIONS
73	Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Research, 2007, 41, 785-794.	11.3	215
74	Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Research, 2007, 41, 1623-1634.	11.3	339
75	Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function. Water Science and Technology, 2007, 55, 9-17.	2.5	21
76	Community Structure, Abundance, and in Situ Activity of Nitrifying Bacteria in River Sediments as Determined by the Combined Use of Molecular Techniques and Microelectrodes. Environmental Science & Technology, 2006, 40, 1532-1539.	10.0	33
77	Community structures and activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms. Biotechnology and Bioengineering, 2006, 94, 762-772.	3.3	49
78	Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnology and Bioengineering, 2006, 94, 1111-1121.	3.3	76
79	Fate of 14 C-Labeled Microbial Products Derived from Nitrifying Bacteria in Autotrophic Nitrifying Biofilms. Applied and Environmental Microbiology, 2005, 71, 3987-3994.	3.1	155
80	Eco-physiology of autotrophic nitrifying biofilms. Water Science and Technology, 2005, 52, 225-232.	2.5	3
81	Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Science and Technology, 2004, 49, 61-68.	2.5	75
82	Analysis of size distribution and areal cell density of ammonia-oxidizing bacterial microcolonies in relation to substrate microprofiles in biofilms. Biotechnology and Bioengineering, 2004, 85, 86-95.	3.3	62
83	Ecophysiological Interaction between Nitrifying Bacteria and Heterotrophic Bacteria in Autotrophic Nitrifying Biofilms as Determined by Microautoradiography-Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2004, 70, 1641-1650.	3.1	323
84	MAR-FISH-An Ecophysiological Approach to Link Phylogenetic Affiliation and In Situ Metabolic Activity of Microorganisms at a Single-Cell Resolution. Microbes and Environments, 2004, 19, 83-98.	1.6	52