Tomonori Kindaichi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7899171/publications.pdf

Version: 2024-02-01

84 papers 4,501 citations

33 h-index 65 g-index

84 all docs

84 docs citations

84 times ranked 4045 citing authors

#	Article	IF	CITATIONS
1	Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Research, 2007, 41, 1623-1634.	11.3	339
2	Ecophysiological Interaction between Nitrifying Bacteria and Heterotrophic Bacteria in Autotrophic Nitrifying Biofilms as Determined by Microautoradiography-Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2004, 70, 1641-1650.	3.1	323
3	Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 2019, 696, 133971.	8.0	320
4	Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor. Water Science and Technology, 2012, 66, 2556-2561.	2.5	280
5	Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Research, 2007, 41, 785-794.	11.3	215
6	Physiological characterization of anaerobic ammonium oxidizing bacterium â€~ <scp><i>C</i></scp> <i>andidatus</i> â€ <scp>J</scp> ettenia caeni'. Environmental Microbiology, 2015, 2172-2189.	137.8	203
7	Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere, 2020, 253, 126646.	8.2	200
8	Fate of 14 C-Labeled Microbial Products Derived from Nitrifying Bacteria in Autotrophic Nitrifying Biofilms. Applied and Environmental Microbiology, 2005, 71, 3987-3994.	3.1	155
9	Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiology Ecology, 2016, 92, fiw078.	2.7	155
10	In Situ Activity and Spatial Organization of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria in Biofilms. Applied and Environmental Microbiology, 2007, 73, 4931-4939.	3.1	144
11	Physiological Characterization of an Anaerobic Ammonium-Oxidizing Bacterium Belonging to the "Candidatus Scalindua―Group. Applied and Environmental Microbiology, 2013, 79, 4145-4148.	3.1	127
12	Anaerobic treatment of municipal wastewater at ambient temperature: Analysis of archaeal community structure and recovery of dissolved methane. Water Research, 2012, 46, 5756-5764.	11.3	121
13	Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor. Water Research, 2010, 44, 1409-1418.	11.3	106
14	Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor. Water Research, 2016, 102, 147-157.	11.3	106
15	Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnology and Bioengineering, 2006, 94, 1111-1121.	3.3	76
16	Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Science and Technology, 2004, 49, 61-68.	2.5	75
17	Enrichment Using an Up-flow Column Reactor and Community Structure of Marine Anammox Bacteria from Coastal Sediment. Microbes and Environments, 2011, 26, 67-73.	1.6	69
18	Treatment of landfill leachate with different techniques: an overview. Journal of Water Reuse and Desalination, 2021, 11, 66-96.	2.3	63

#	Article	IF	Citations
19	Analysis of size distribution and areal cell density of ammonia-oxidizing bacterial microcolonies in relation to substrate microprofiles in biofilms. Biotechnology and Bioengineering, 2004, 85, 86-95.	3.3	62
20	Cultivation of Planktonic Anaerobic Ammonium Oxidation (Anammox) Bacteria Using Membrane Bioreactor. Microbes and Environments, 2013, 28, 436-443.	1.6	59
21	Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system. Water Research, 2015, 80, 337-345.	11.3	59
22	Biological oxidation of Mn(II) coupled with nitrification for removal and recovery of minor metals by downflow hanging sponge reactor. Water Research, 2015, 68, 545-553.	11.3	59
23	Phosphate recovery as concentrated solution from treated wastewater by a PAO-enriched biofilm reactor. Water Research, 2013, 47, 2025-2032.	11.3	58
24	Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment. Bioresource Technology, 2011, 102, 10299-10304.	9.6	53
25	Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process. Chemical Engineering Research and Design, 2017, 111, 253-262.	5.6	53
26	MAR-FISH-An Ecophysiological Approach to Link Phylogenetic Affiliation and In Situ Metabolic Activity of Microorganisms at a Single-Cell Resolution. Microbes and Environments, 2004, 19, 83-98.	1.6	52
27	Integrated anammox-biochar in synthetic wastewater treatment: Performance and optimization by artificial neural network. Journal of Cleaner Production, 2020, 243, 118638.	9.3	52
28	Cometabolism of the Superphylum Patescibacteria with Anammox Bacteria in a Long-Term Freshwater Anammox Column Reactor. Water (Switzerland), 2021, 13, 208.	2.7	51
29	Community structures and activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms. Biotechnology and Bioengineering, 2006, 94, 762-772.	3.3	49
30	Cross-linked chitosan/zeolite as a fixed-bed column for organic micropollutants removal from aqueous solution, optimization with RSM and artificial neural network. Journal of Environmental Management, 2019, 250, 109434.	7.8	45
31	Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater. Water Research, 2018, 130, 224-233.	11.3	44
32	Biogas purification performance of new water scrubber packed with sponge carriers. Journal of Cleaner Production, 2019, 214, 103-111.	9.3	38
33	High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants. Environmental Microbiology, 2013, 15, 1821-1831.	3.8	36
34	Nitro-PAHs and PAHs in Atmospheric Particulate Matters and Sea Sediments in Hiroshima Bay Area, Japan. Water, Air, and Soil Pollution, 2010, 207, 263-271.	2.4	35
35	Dual nitrogen and oxygen isotope fractionation during anaerobic ammonium oxidation by anammox bacteria. ISME Journal, 2019, 13, 2426-2436.	9.8	35
36	Biomass Yield Efficiency of the Marine Anammox Bacterium, " <i>Candidatus</i> Scalindua sp.,―is Affected by Salinity. Microbes and Environments, 2015, 30, 86-91.	1.6	34

#	Article	IF	CITATIONS
37	Community Structure, Abundance, and in Situ Activity of Nitrifying Bacteria in River Sediments as Determined by the Combined Use of Molecular Techniques and Microelectrodes. Environmental Science &	10.0	33
38	Nitrogen removal using an anammox membrane bioreactor at low temperature. Water Science and Technology, 2015, 72, 2148-2153.	2.5	31
39	Influence of temperature and salinity on microbial structure of marine anammox bacteria. Water Science and Technology, 2012, 66, 958-964.	2.5	30
40	Effects of organic matter in livestock manure digester liquid on microbial community structure and in situ activity of anammox granules. Chemosphere, 2016, 159, 300-307.	8.2	29
41	Genetic diversity of marine anaerobic ammoniumâ€oxidizing bacteria as revealed by genomic and proteomic analyses of â€~ <i>Candidatus</i> Scalindua japonica'. Environmental Microbiology Reports, 2017, 9, 550-561.	2.4	29
42	Loading and removal of PAHs, fragrance compounds, triclosan and toxicity by composting process from sewage sludge. Science of the Total Environment, 2017, 605-606, 860-866.	8.0	23
43	Pollutants removal from synthetic wastewater by the combined electrochemical, adsorption and sequencing batch reactor (SBR). Ecotoxicology and Environmental Safety, 2018, 161, 137-144.	6.0	23
44	Enrichment of marine anammox bacteria in Hiroshima Bay sediments. Water Science and Technology, 2011, 63, 964-969.	2.5	22
45	Specificities and Efficiencies of Primers Targeting Candidatus Phylum Saccharibacteria in Activated Sludge. Materials, 2018, 11, 1129.	2.9	22
46	Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function. Water Science and Technology, 2007, 55, 9-17.	2.5	21
47	Investigation of prospective factors that control Kouleothrix (Type 1851) filamentous bacterial abundance and their correlation with sludge settleability in full-scale wastewater treatment plants. Chemical Engineering Research and Design, 2019, 124, 137-142.	5.6	19
48	Dominant <i>Candidatus</i> Accumulibacter phosphatis Enriched in Response to Phosphate Concentrations in EBPR Process. Microbes and Environments, 2017, 32, 260-267.	1.6	17
49	Pollutant Removal from Synthetic Aqueous Solutions with a Combined Electrochemical Oxidation and Adsorption Method. International Journal of Environmental Research and Public Health, 2018, 15, 1443.	2.6	17
50	Multiple organic substrates support Mn(II) removal with enrichment of Mn(II)-oxidizing bacteria. Journal of Environmental Management, 2020, 259, 109771.	7.8	17
51	Photodegradation of fragrance materials and triclosan in water: Direct photolysis and photosensitized degradation. Environmental Technology and Innovation, 2021, 23, 101766.	6.1	14
52	PAH contents in road dust on principal roads collected nationwide in Japan and their influential factors. Water Science and Technology, 2015, 72, 1062-1071.	2.5	12
53	Reactor performance and microbial community structure of single-stage partial nitritation anammox membrane bioreactors inoculated with Brocadia and Scalindua enrichment cultures. Biochemical Engineering Journal, 2021, 170, 107991.	3.6	12
54	PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments. Water Science and Technology, 2012, 66, 983-992.	2.5	11

#	Article	IF	CITATIONS
55	Stormwater inflow loading of polycyclic aromatic hydrocarbons into urban domestic wastewater treatment plant for separate sewer system. Water Science and Technology, 2019, 79, 1426-1436.	2.5	11
56	Mn(II) oxidation and manganese-oxide reduction on the decolorization of an azo dye. International Biodeterioration and Biodegradation, 2020, 146, 104820.	3.9	11
57	Biological methane production coupled with sulfur oxidation in a microbial electrosynthesis system without organic substrates. Journal of Environmental Sciences, 2022, 116, 68-78.	6.1	11
58	Metabolic Potential of the Superphylum <i>Patescibacteria</i> Reconstructed from Activated Sludge Samples from a Municipal Wastewater Treatment Plant. Microbes and Environments, 2022, 37, n/a.	1.6	11
59	Estimation of river discharge loadings of PAHs in a suburban river in Hiroshima Prefecture, Japan. Journal of Water and Environment Technology, 2009, 7, 109-120.	0.7	9
60	Development of anammox reactor equipped with a degassing membrane to improve biomass retention. Water Science and Technology, 2012, 66, 451-456.	2.5	9
61	Effects of Salts on the Activity and Growth of " <i>Candidatus</i> Scalindua sp.â€, a Marine Anammox Bacterium. Microbes and Environments, 2018, 33, 336-339.	1.6	9
62	A Polyphasic Approach to Study Ecophysiology of Complex Multispecies Nitrifying Biofilms. Methods in Enzymology, 2011, 496, 163-184.	1.0	8
63	Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants. PLoS ONE, 2015, 10, e0136424.	2.5	8
64	Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms. Frontiers in Microbiology, 2021, 12, 537194.	3 . 5	8
65	Performance optimization of a chitosan/anammox reactor in nitrogen removal from synthetic wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105252.	6.7	8
66	Bioelectrical Methane Production with an Ammonium Oxidative Reaction under the No Organic Substance Condition. Microbes and Environments, 2021, 36, n/a.	1.6	8
67	Anti-bacterial Effects of MnO ₂ on the Enrichment of Manganese-oxidizing Bacteria in Downflow Hanging Sponge Reactors. Microbes and Environments, 2020, 35, n/a.	1.6	7
68	Estimation of the emission factors of PAHs by traffic with the model of atmospheric dispersion and deposition from heavy traffic road. Water Science and Technology, 2007, 56, 233-242.	2.5	6
69	Integrated biological–physical process for biogas purification effluent treatment. Journal of Environmental Sciences, 2019, 83, 110-122.	6.1	6
70	Modelling of wet deposition of atmospheric polycyclic aromatic hydrocarbons by the consecutive measurements in an urban area, Japan. Water Science and Technology, 2010, 62, 1922-1930.	2.5	5
71	PAHs emission source analysis for air and water environments by isomer ratios — Comparison by modified Cohen's d. Science of the Total Environment, 2020, 715, 136831.	8.0	5
72	Mutualistic relationship between <i>Nitrospira</i> and concomitant heterotrophs. Environmental Microbiology Reports, 2022, 14, 130-137.	2.4	5

#	Article	IF	CITATIONS
73	Enrichment and identification of methane-oxidizing bacteria by using down-flow hanging sponge bioreactors under low methane concentration. Annals of Microbiology, 2011, 61, 683-687.	2.6	4
74	Degradation and volatilization process of fragrance materials and triclosan in wastewater treatment plant $\hat{a} \in \text{``Comparison}$ between field survey and laboratory experiment $\hat{a} \in \text{``Comparison}$. Environmental Technology and Innovation, 2019, 16, 100438.	6.1	4
75	Environmental Factors Affecting the Community of Methane-oxidizing Bacteria. Microbes and Environments, 2022, 37, n/a.	1.6	4
76	Growth of nitriteâ€oxidizing <i>Nitrospira</i> and ammoniaâ€oxidizing <i>Nitrosomonas</i> in marine recirculating trickling biofilter reactors. Environmental Microbiology, 2022, 24, 3735-3750.	3.8	4
77	Effects of Recirculating Aquaculture System Wastewater on Anammox Performance and Community Structure. Processes, 2021, 9, 1183.	2.8	3
78	Eco-physiology of autotrophic nitrifying biofilms. Water Science and Technology, 2005, 52, 225-232.	2.5	3
79	Draft Genome Sequence of Mn(II)-Oxidizing Pseudomonas resinovorans Strain MO-1. Genome Announcements, $2018, 6, .$	0.8	1
80	Photocatalytic Decomposition of Atmospheric Toxic Substances on the TiO2-loaded Glasses Set on the Roadside of a Highway. Journal of Water and Environment Technology, 2012, 10, 399-408.	0.7	0
81	Polyphosphate-accumulating organisms capable of living under high salinity environment. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2013, 69, III_523-III_530.	0.1	O
82	METABOLIC ACTIVITY OF MARINE ANAMMOX BACTERIA USING HEAVY METALS AND SULFATE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2014, 70, III_251-III_256.	0.1	0
83	PAH diagnostic ratio analysis in atmospheric and aquatic environments for the pollution emission source identification. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2015, 71, III_151-III_159.	0.1	0
84	Recent Progress in Cutting-edge Monitoring Tools for Microbiomes in Engineered Systems. Journal of Japan Society on Water Environment, 2022, 45, 91-105.	0.4	0