Hiroyuki Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7897662/publications.pdf

Version: 2024-02-01

331670 315739 1,471 51 21 38 citations h-index g-index papers 52 52 52 1414 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein E-derived arginine-rich amphipathic α-helical peptides. Scientific Reports, 2022, 12, 4959.	3.3	15
2	Mechanisms of enhanced aggregation and fibril formation of Parkinson's disease-related variants of α-synuclein. Scientific Reports, 2022, 12, 6770.	3.3	14
3	Design and Synthesis of 6â€∢i>Oà€Phosphorylated Heparan Sulfate Oligosaccharides to Inhibit Amyloid β Aggregation. ChemBioChem, 2022, 23, .	2.6	3
4	Novel conformationâ€selective monoclonal antibodies against apoAâ€l amyloid fibrils. FEBS Journal, 2021, 288, 1496-1513.	4.7	4
5	Mechanisms of Aggregation and Amyloid Fibril Formation of Apolipoproteins on Lipid Membranes. Membrane, 2021, 46, 25-31.	0.0	O
6	Cell-to-cell transmission of p53 aggregates: a novel player in oncology?. Molecular and Cellular Oncology, 2021, 8, 1892444.	0.7	3
7	Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183403.	2.6	16
8	Sulfated glycosaminoglycans mediate prion-like behavior of p53 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33225-33234.	7.1	20
9	Phosphatidylethanolamine accelerates aggregation of the amyloidogenic Nâ€terminal fragment of apoAâ€l. FEBS Letters, 2020, 594, 1443-1452.	2.8	2
10	Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. Journal of Biological Chemistry, 2019, 294, 13515-13524.	3.4	15
11	Biophysical Mechanism of Protein Export by Bacterial Type III Secretion System. Chemical and Pharmaceutical Bulletin, 2019, 67, 341-344.	1.3	5
12	Refining Calibration Procedures of Circular Dichroism Spectrometer to Improve Usability. Analytical Sciences, 2019, 35, 1275-1278.	1.6	0
13	A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 541-549.	2.6	20
14	The Accumulation of Heparan Sulfate S-Domains in Kidney Transthyretin Deposits Accelerates Fibril Formation and Promotes Cytotoxicity. American Journal of Pathology, 2019, 189, 308-319.	3.8	5
15	Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Scientific Reports, 2018, 8, 5497.	3.3	9
16	Lipid Bilayer Interactions of Amyloidogenic N-Terminal Fragment of Apolipoprotein A-I Probed by FA¶rster Resonance Energy Transfer and Molecular Dynamics Simulations. Journal of Fluorescence, 2018, 28, 1037-1047.	2.5	1
17	Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions. Current Protein and Peptide Science, 2018, 19, 623-630.	1.4	23
18	Fluorescence study of the effect of the oxidized phospholipids on amyloid fibril formation by the apolipoprotein A-I N-terminal fragment. Chemical Physics Letters, 2017, 688, 1-6.	2.6	6

#	Article	IF	Citations
19	Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Scientific Reports, 2017, 7, 2988.	3.3	1
20	Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals, 2017, 10, 42.	3.8	17
21	Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1339-1349.	2.6	17
22	The novel functional nucleic acid iRed effectively regulates target genes following cytoplasmic delivery by faint electric treatment. Science and Technology of Advanced Materials, 2016, 17, 554-562.	6.1	18
23	Iowa Mutant Apolipoprotein A-I (ApoA-Ilowa) Fibrils Target Lysosomes. Scientific Reports, 2016, 6, 30391.	3.3	14
24	Heparin promotes fibril formation by the Nâ€ŧerminal fragment of amyloidogenic apolipoprotein Aâ€ŧ. FEBS Letters, 2016, 590, 3492-3500.	2.8	15
25	Enzymatic remodeling of heparan sulfate: a therapeutic strategy for systemic and localized amyloidoses?. Neural Regeneration Research, 2016, 11, 408.	3.0	8
26	Kinetic and Thermodynamic Analyses of Spontaneous Exchange between High-Density Lipoprotein-Bound and Lipid-Free Apolipoprotein A-I. Biochemistry, 2015, 54, 1123-1131.	2.5	23
27	Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes. Journal of Biological Chemistry, 2015, 290, 20947-20959.	3.4	12
28	Cellular Interaction and Cytotoxicity of the Iowa Mutation of Apolipoprotein A-I (ApoA-Ilowa) Amyloid Mediated by Sulfate Moieties of Heparan Sulfate. Journal of Biological Chemistry, 2015, 290, 24210-24221.	3.4	26
29	Direct detection of ABCA1-dependent HDL formation based on lipidation-induced hydrophobicity change in apoA-I. Journal of Lipid Research, 2014, 55, 2423-2431.	4.2	6
30	The extreme Nâ€terminal region of human apolipoprotein Aâ€l has a strong propensity to form amyloid fibrils. FEBS Letters, 2014, 588, 389-394.	2.8	24
31	Interaction of Thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: Resonance energy transfer study. Journal of Structural Biology, 2014, 185, 116-124.	2.8	23
32	Dual Role of an N-terminal Amyloidogenic Mutation in Apolipoprotein A-I. Journal of Biological Chemistry, 2013, 288, 2848-2856.	3.4	37
33	Slow tumbling but large protrusion of phospholipids in the cell sized giant vesicle. Chemical Physics Letters, 2013, 570, 136-140.	2.6	7
34	Interactions of Apolipoprotein A-I with High-Density Lipoprotein Particles. Biochemistry, 2013, 52, 1963-1972.	2.5	22
35	Effects of the Iowa and Milano Mutations on Apolipoprotein A-I Structure and Dynamics Determined by Hydrogen Exchange and Mass Spectrometry. Biochemistry, 2012, 51, 8993-9001.	2.5	25
36	Fluorescence Analysis of the Lipid Binding-Induced Conformational Change of Apolipoprotein E4. Biochemistry, 2012, 51, 5580-5588.	2.5	21

#	Article	IF	CITATIONS
37	Physicochemical Mechanism for the Enhanced Ability of Lipid Membrane Penetration of Polyarginine. Langmuir, 2011, 27, 7099-7107.	3.5	58
38	Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles. Journal of Lipid Research, 2010, 51, 606-617.	4.2	35
39	Evaluation of lipidâ€binding properties of the Nâ€ŧerminal helical segments in human apolipoprotein Aâ€ŧ using fragment peptides. Journal of Peptide Science, 2009, 15, 36-42.	1.4	14
40	Interaction between the N- and C-Terminal Domains Modulates the Stability and Lipid Binding of Apolipoprotein A-I. Biochemistry, 2009, 48, 2529-2537.	2.5	41
41	Conformational Flexibility of the N-Terminal Domain of Apolipoprotein A-I Bound to Spherical Lipid Particles. Biochemistry, 2008, 47, 11340-11347.	2.5	47
42	Conformational change of apolipoprotein A-I and HDL formation from model membranes under intracellular acidic conditions. Journal of Lipid Research, 2008, 49, 2419-2426.	4.2	23
43	Contributions of the N- and C-Terminal Helical Segments to the Lipid-Free Structure and Lipid Interaction of Apolipoprotein A-lâ€. Biochemistry, 2006, 45, 10351-10358.	2.5	69
44	Two-step Mechanism of Binding of Apolipoprotein E to Heparin. Journal of Biological Chemistry, 2005, 280, 5414-5422.	3.4	73
45	α-Helix Formation Is Required for High Affinity Binding of Human Apolipoprotein A-l to Lipids. Journal of Biological Chemistry, 2004, 279, 20974-20981.	3.4	103
46	Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Progress in Lipid Research, 2004, 43, 350-380.	11.6	187
47	Characterization of the Heparin Binding Sites in Human Apolipoprotein E. Journal of Biological Chemistry, 2003, 278, 14782-14787.	3.4	74
48	Domain Structure and Lipid Interaction in Human Apolipoproteins A-I and E, a General Model. Journal of Biological Chemistry, 2003, 278, 23227-23232.	3.4	161
49	Cholesterol Modulates Interaction between an Amphipathic Class A Peptide, Ac-18A-NH2, and Phosphatidylcholine Bilayersâ€. Biochemistry, 2002, 41, 4165-4172.	2.5	36
50	13C NMR Method for the Determination of Peptide and Protein Binding Sites in Lipid Bilayers and Emulsions. Journal of Physical Chemistry B, 2001, 105, 12616-12621.	2.6	14
51	Physical States of Surface and Core Lipids in Lipid Emulsions and Apolipoprotein Binding to the Emulsion Surface. Journal of Biological Chemistry, 1996, 271, 15515-15520.	3.4	59