Hiroyuki Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7897662/publications.pdf Version: 2024-02-01

HIDOVIJKI SAITO

#	Article	IF	CITATIONS
1	Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Progress in Lipid Research, 2004, 43, 350-380.	11.6	187
2	Domain Structure and Lipid Interaction in Human Apolipoproteins A-I and E, a General Model. Journal of Biological Chemistry, 2003, 278, 23227-23232.	3.4	161
3	α-Helix Formation Is Required for High Affinity Binding of Human Apolipoprotein A-I to Lipids. Journal of Biological Chemistry, 2004, 279, 20974-20981.	3.4	103
4	Characterization of the Heparin Binding Sites in Human Apolipoprotein E. Journal of Biological Chemistry, 2003, 278, 14782-14787.	3.4	74
5	Two-step Mechanism of Binding of Apolipoprotein E to Heparin. Journal of Biological Chemistry, 2005, 280, 5414-5422.	3.4	73
6	Contributions of the N- and C-Terminal Helical Segments to the Lipid-Free Structure and Lipid Interaction of Apolipoprotein A-lâ€. Biochemistry, 2006, 45, 10351-10358.	2.5	69
7	Physical States of Surface and Core Lipids in Lipid Emulsions and Apolipoprotein Binding to the Emulsion Surface. Journal of Biological Chemistry, 1996, 271, 15515-15520.	3.4	59
8	Physicochemical Mechanism for the Enhanced Ability of Lipid Membrane Penetration of Polyarginine. Langmuir, 2011, 27, 7099-7107.	3.5	58
9	Conformational Flexibility of the N-Terminal Domain of Apolipoprotein A-I Bound to Spherical Lipid Particles. Biochemistry, 2008, 47, 11340-11347.	2.5	47
10	Interaction between the N- and C-Terminal Domains Modulates the Stability and Lipid Binding of Apolipoprotein A-I. Biochemistry, 2009, 48, 2529-2537.	2.5	41
11	Dual Role of an N-terminal Amyloidogenic Mutation in Apolipoprotein A-I. Journal of Biological Chemistry, 2013, 288, 2848-2856.	3.4	37
12	Cholesterol Modulates Interaction between an Amphipathic Class A Peptide, Ac-18A-NH2, and Phosphatidylcholine Bilayersâ€. Biochemistry, 2002, 41, 4165-4172.	2.5	36
13	Surface plasmon resonance analysis of the mechanism of binding of apoA-I to high density lipoprotein particles. Journal of Lipid Research, 2010, 51, 606-617.	4.2	35
14	Cellular Interaction and Cytotoxicity of the Iowa Mutation of Apolipoprotein A-I (ApoA-IIowa) Amyloid Mediated by Sulfate Moieties of Heparan Sulfate. Journal of Biological Chemistry, 2015, 290, 24210-24221.	3.4	26
15	Effects of the Iowa and Milano Mutations on Apolipoprotein A-I Structure and Dynamics Determined by Hydrogen Exchange and Mass Spectrometry. Biochemistry, 2012, 51, 8993-9001.	2.5	25
16	The extreme Nâ€ŧerminal region of human apolipoprotein A″ has a strong propensity to form amyloid fibrils. FEBS Letters, 2014, 588, 389-394.	2.8	24
17	Conformational change of apolipoprotein A-I and HDL formation from model membranes under intracellular acidic conditions. Journal of Lipid Research, 2008, 49, 2419-2426.	4.2	23
18	Interaction of Thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: Resonance energy transfer study. Journal of Structural Biology, 2014, 185, 116-124.	2.8	23

ΗΙROYUKI SAITO

#	Article	IF	CITATIONS
19	Kinetic and Thermodynamic Analyses of Spontaneous Exchange between High-Density Lipoprotein-Bound and Lipid-Free Apolipoprotein A-I. Biochemistry, 2015, 54, 1123-1131.	2.5	23
20	Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions. Current Protein and Peptide Science, 2018, 19, 623-630.	1.4	23
21	Interactions of Apolipoprotein A-I with High-Density Lipoprotein Particles. Biochemistry, 2013, 52, 1963-1972.	2.5	22
22	Fluorescence Analysis of the Lipid Binding-Induced Conformational Change of Apolipoprotein E4. Biochemistry, 2012, 51, 5580-5588.	2.5	21
23	A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 541-549.	2.6	20
24	Sulfated glycosaminoglycans mediate prion-like behavior of p53 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33225-33234.	7.1	20
25	The novel functional nucleic acid iRed effectively regulates target genes following cytoplasmic delivery by faint electric treatment. Science and Technology of Advanced Materials, 2016, 17, 554-562.	6.1	18
26	Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1339-1349.	2.6	17
27	Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals, 2017, 10, 42.	3.8	17
28	Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183403.	2.6	16
29	Heparin promotes fibril formation by the Nâ€ŧerminal fragment of amyloidogenic apolipoprotein Aâ€ŀ. FEBS Letters, 2016, 590, 3492-3500.	2.8	15
30	Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. Journal of Biological Chemistry, 2019, 294, 13515-13524.	3.4	15
31	Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein E-derived arginine-rich amphipathic α-helical peptides. Scientific Reports, 2022, 12, 4959.	3.3	15
32	13C NMR Method for the Determination of Peptide and Protein Binding Sites in Lipid Bilayers and Emulsions. Journal of Physical Chemistry B, 2001, 105, 12616-12621.	2.6	14
33	Evaluation of lipidâ€binding properties of the Nâ€ŧerminal helical segments in human apolipoprotein Aâ€ŀ using fragment peptides. Journal of Peptide Science, 2009, 15, 36-42.	1.4	14
34	Iowa Mutant Apolipoprotein A-I (ApoA-IIowa) Fibrils Target Lysosomes. Scientific Reports, 2016, 6, 30391.	3.3	14
35	Mechanisms of enhanced aggregation and fibril formation of Parkinson's disease-related variants of α-synuclein. Scientific Reports, 2022, 12, 6770.	3.3	14
36	Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes. Journal of Biological Chemistry, 2015, 290, 20947-20959.	3.4	12

ΗΙROYUKI SAITO

#	Article	IF	CITATIONS
37	Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Scientific Reports, 2018, 8, 5497.	3.3	9
38	Enzymatic remodeling of heparan sulfate: a therapeutic strategy for systemic and localized amyloidoses?. Neural Regeneration Research, 2016, 11, 408.	3.0	8
39	Slow tumbling but large protrusion of phospholipids in the cell sized giant vesicle. Chemical Physics Letters, 2013, 570, 136-140.	2.6	7
40	Direct detection of ABCA1-dependent HDL formation based on lipidation-induced hydrophobicity change in apoA-I. Journal of Lipid Research, 2014, 55, 2423-2431.	4.2	6
41	Fluorescence study of the effect of the oxidized phospholipids on amyloid fibril formation by the apolipoprotein A-I N-terminal fragment. Chemical Physics Letters, 2017, 688, 1-6.	2.6	6
42	Biophysical Mechanism of Protein Export by Bacterial Type III Secretion System. Chemical and Pharmaceutical Bulletin, 2019, 67, 341-344.	1.3	5
43	The Accumulation of Heparan Sulfate S-Domains in Kidney Transthyretin Deposits Accelerates Fibril Formation and Promotes Cytotoxicity. American Journal of Pathology, 2019, 189, 308-319.	3.8	5
44	Novel conformationâ€selective monoclonal antibodies against apoAâ€l amyloid fibrils. FEBS Journal, 2021, 288, 1496-1513.	4.7	4
45	Cell-to-cell transmission of p53 aggregates: a novel player in oncology?. Molecular and Cellular Oncology, 2021, 8, 1892444.	0.7	3
46	Design and Synthesis of 6â€ <i>O</i> â€Phosphorylated Heparan Sulfate Oligosaccharides to Inhibit Amyloid β Aggregation. ChemBioChem, 2022, 23, .	2.6	3
47	Phosphatidylethanolamine accelerates aggregation of the amyloidogenic Nâ€ŧerminal fragment of apoAâ€ŀ. FEBS Letters, 2020, 594, 1443-1452.	2.8	2
48	Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Scientific Reports, 2017, 7, 2988.	3.3	1
49	Lipid Bilayer Interactions of Amyloidogenic N-Terminal Fragment of Apolipoprotein A-I Probed by FA¶rster Resonance Energy Transfer and Molecular Dynamics Simulations. Journal of Fluorescence, 2018, 28, 1037-1047.	2.5	1
50	Refining Calibration Procedures of Circular Dichroism Spectrometer to Improve Usability. Analytical Sciences, 2019, 35, 1275-1278.	1.6	0
51	Mechanisms of Aggregation and Amyloid Fibril Formation of Apolipoproteins on Lipid Membranes. Membrane, 2021, 46, 25-31.	0.0	0