
## Tamas Dalmay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7895441/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mechanistic insights into non-coding Y RNA processing. RNA Biology, 2022, 19, 468-480.                                                                                                                                | 1.5 | 3         |
| 2  | Gene expression during larval caste determination and differentiation in intermediately eusocial<br>bumblebees, and a comparative analysis with advanced eusocial honeybees. Molecular Ecology, 2021,<br>30, 718-735. | 2.0 | 8         |
| 3  | miR-7b-3p Exerts a Dual Role After Spinal Cord Injury, by Supporting Plasticity and Neuroprotection at<br>Cortical Level. Frontiers in Molecular Biosciences, 2021, 8, 618869.                                        | 1.6 | 9         |
| 4  | Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer. Oncogene, 2020, 39, 5553-5569.                                                                                                                   | 2.6 | 20        |
| 5  | microRNA-seq of cartilage reveals an overabundance of miR-140-3p which contains functional isomiRs.<br>Rna, 2020, 26, 1575-1588.                                                                                      | 1.6 | 17        |
| 6  | The role of microRNA-3085 in chondrocyte function. Scientific Reports, 2020, 10, 21923.                                                                                                                               | 1.6 | 5         |
| 7  | Tobacco RNA-dependent RNA polymerase 1 affects the expression of defence-related genes in Nicotiana<br>benthamiana upon Tomato leaf curl Gujarat virus infection. Planta, 2020, 252, 11.                              | 1.6 | 16        |
| 8  | Artificially induced phased siRNAs promote virus resistance in transgenic plants. Virology, 2019, 537, 208-215.                                                                                                       | 1.1 | 11        |
| 9  | Molecular insights into an ancient form of Paget's disease of bone. Proceedings of the National<br>Academy of Sciences of the United States of America, 2019, 116, 10463-10472.                                       | 3.3 | 24        |
| 10 | Detection of miRNA cancer biomarkers using light activated Molecular Beacons. RSC Advances, 2019, 9, 12766-12783.                                                                                                     | 1.7 | 6         |
| 11 | Maternally expressed, paternally imprinted, embryonic non-coding RNA are expressed in osteosarcoma,<br>Ewing sarcoma and spindle cell sarcoma. Pathology, 2019, 51, 113-116.                                          | 0.3 | 1         |
| 12 | The UEA sRNA Workbench (version 4.4): a comprehensive suite of tools for analyzing miRNAs and sRNAs. Bioinformatics, 2018, 34, 3382-3384.                                                                             | 1.8 | 50        |
| 13 | Experimental study of the evanescentâ€wave photonic sensors response in presence of molecular<br>beacon conformational changes. Journal of Biophotonics, 2018, 11, e201800030.                                        | 1.1 | 8         |
| 14 | Control of seminal fluid protein expression via regulatory hubs in <i>Drosophila melanogaster</i> .<br>Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181681.                                  | 1.2 | 15        |
| 15 | microRNAs associated with early neural crest development in Xenopus laevis. BMC Genomics, 2018, 19, 59.                                                                                                               | 1.2 | 22        |
| 16 | Ambient temperature regulates the expression of a small set of sRNAs influencing plant development<br>through <i>NF</i> â€ <i>YA2</i> and <i>YUC2</i> . Plant, Cell and Environment, 2018, 41, 2404-2417.             | 2.8 | 67        |
| 17 | PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules. Nucleic Acids Research, 2018, 46, 8730-8739.                                 | 6.5 | 31        |
| 18 | High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 2018, 9, 1717.                        | 1.5 | 12        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Small RNA populations revealed by blocking rRNA fragments in Drosophila melanogaster reproductive tissues. PLoS ONE, 2018, 13, e0191966.                                                                          | 1.1 | 12        |
| 20 | Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biology, 2017, 18, 27.                                                | 3.8 | 624       |
| 21 | miR-16 is highly expressed in Paget's associated osteosarcoma. Endocrine-Related Cancer, 2017, 24,<br>L27-L31.                                                                                                    | 1.6 | 7         |
| 22 | miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics, 2017, 33, 2446-2454.                                                                         | 1.8 | 49        |
| 23 | Genomic responses to the socio-sexual environment in male <i>Drosophila melanogaster</i> exposed to conspecific rivals. Rna, 2017, 23, 1048-1059.                                                                 | 1.6 | 47        |
| 24 | MicroRNAs Associated with Caste Determination and Differentiation in a Primitively Eusocial Insect.<br>Scientific Reports, 2017, 7, 45674.                                                                        | 1.6 | 32        |
| 25 | Comprehensive processing of high-throughput small RNA sequencing data including quality checking,<br>normalization, and differential expression analysis using the UEA sRNA Workbench. Rna, 2017, 23,<br>823-835. | 1.6 | 29        |
| 26 | MicroRNA expression in a phosphaturic mesenchymal tumour. Bone Reports, 2017, 7, 63-69.                                                                                                                           | 0.2 | 7         |
| 27 | Implementing the sterile insect technique with <scp>RNA</scp> interference – a review. Entomologia<br>Experimentalis Et Applicata, 2017, 164, 155-175.                                                            | 0.7 | 27        |
| 28 | Evolution of flower color pattern through selection on regulatory small RNAs. Science, 2017, 358, 925-928.                                                                                                        | 6.0 | 48        |
| 29 | Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses. BMC Genomics, 2017, 18, 416.                                                      | 1.2 | 30        |
| 30 | Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus<br>Magnaporthe oryzae. Archives of Virology, 2017, 162, 891-895.                                                         | 0.9 | 33        |
| 31 | Transcriptional regulation of male-sterility in 7B-1 male-sterile tomato mutant. PLoS ONE, 2017, 12, e0170715.                                                                                                    | 1.1 | 24        |
| 32 | Comparison of alternative approaches for analysing multi-level RNA-seq data. PLoS ONE, 2017, 12, e0182694.                                                                                                        | 1.1 | 25        |
| 33 | Chromosomal-Level Assembly of the Asian Seabass Genome Using Long Sequence Reads and<br>Multi-layered Scaffolding. PLoS Genetics, 2016, 12, e1005954.                                                             | 1.5 | 105       |
| 34 | The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell<br>migration. Cell Death and Disease, 2016, 7, e2184-e2184.                                                 | 2.7 | 29        |
| 35 | High-throughput-sequencing-based identification of a grapevine fanleaf virus satellite RNA in Vitis vinifera. Archives of Virology, 2016, 161, 1401-1403.                                                         | 0.9 | 9         |
| 36 | Transfer RNA-derived small RNAs in the cancer transcriptome. Pflugers Archiv European Journal of Physiology, 2016, 468, 1041-1047.                                                                                | 1.3 | 52        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA. Osteoarthritis and Cartilage, 2016, 24, 534-543.              | 0.6 | 38        |
| 38 | The microRNA-29 family in cartilage homeostasis and osteoarthritis. Journal of Molecular Medicine, 2016, 94, 583-596.                                                                       | 1.7 | 106       |
| 39 | Microguards and micromessengers of the genome. Heredity, 2016, 116, 125-134.                                                                                                                | 1.2 | 28        |
| 40 | Role of <i>miR-140</i> in embryonic bone development and cancer. Clinical Science, 2015, 129, 863-873.                                                                                      | 1.8 | 24        |
| 41 | Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics, 2015, 16, 878.                       | 1.2 | 58        |
| 42 | A Database of microRNA Expression Patterns in Xenopus laevis. PLoS ONE, 2015, 10, e0138313.                                                                                                 | 1.1 | 21        |
| 43 | MicroRNA Regulation of Abiotic Stress Response in <i>7Bâ€l </i> Maleâ€6terile Tomato Mutant. Plant<br>Genome, 2015, 8, eplantgenome2015.02.0008.                                            | 1.6 | 12        |
| 44 | An improved protocol for small RNA library construction using High Definition adapters. Methods in Next Generation Sequencing, 2015, 2, .                                                   | 1.5 | 14        |
| 45 | A Non-canonical RNA Silencing Pathway Promotes mRNA Degradation in Basal Fungi. PLoS Genetics, 2015, 11, e1005168.                                                                          | 1.5 | 57        |
| 46 | The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015,<br>16, 76.                                                                             | 3.8 | 330       |
| 47 | MicroRNA. , 2015, , 1-3.                                                                                                                                                                    |     | 0         |
| 48 | MicroRNA. , 2015, , 2840-2841.                                                                                                                                                              |     | 0         |
| 49 | MicroRNAs Influence Reproductive Responses by Females to Male Sex Peptide in <i>Drosophila melanogaster</i> . Genetics, 2014, 198, 1603-1619.                                               | 1.2 | 36        |
| 50 | miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics, 2014, 15, 243-253.                                   | 0.7 | 99        |
| 51 | Global discovery and characterization of small non-coding RNAs in marine microalgae. BMC Genomics, 2014, 15, 697.                                                                           | 1.2 | 21        |
| 52 | Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters. PLoS ONE, 2014,<br>9, e103590.                                                                         | 1.1 | 16        |
| 53 | MirPlex: A Tool for Identifying miRNAs in Highâ€Throughput sRNA Datasets Without a Genome. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 47-56. | 0.6 | 22        |
| 54 | New Evidence Supports the Notion that MicroRNAâ€140 May Play a Role in the Early Stages of Bone<br>Development. Arthritis and Rheumatism, 2013, 65, 1668-1669.                              | 6.7 | 5         |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | CoLIde. RNA Biology, 2013, 10, 1221-1230.                                                                                                                                        | 1.5 | 28        |
| 56 | Y RNAs: recent developments. Biomolecular Concepts, 2013, 4, 103-110.                                                                                                            | 1.0 | 35        |
| 57 | Discovery of novel small RNAs in the quest to unravel genome complexity. Biochemical Society Transactions, 2013, 41, 866-870.                                                    | 1.6 | 7         |
| 58 | Mechanism of miRNA-mediated repression of mRNA translation. Essays in Biochemistry, 2013, 54, 29-38.                                                                             | 2.1 | 128       |
| 59 | A Single Argonaute Gene Participates in Exogenous and Endogenous RNAi and Controls Cellular<br>Functions in the Basal Fungus Mucor circinelloides. PLoS ONE, 2013, 8, e69283.    | 1.1 | 53        |
| 60 | Small RNA Analysis in Sindbis Virus Infected Human HEK293 Cells. PLoS ONE, 2013, 8, e84070.                                                                                      | 1.1 | 11        |
| 61 | Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation.<br>Journal of Cell Science, 2012, 125, 3590-3600.                        | 1.2 | 117       |
| 62 | PAREsnip: a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing. Nucleic Acids Research, 2012, 40, e103-e103.           | 6.5 | 96        |
| 63 | miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS<br>Letters, 2012, 586, 3242-3248.                                              | 1.3 | 102       |
| 64 | Diverse correlation patterns between microRNAs and their targets during tomato fruit development<br>indicates different modes of microRNA actions. Planta, 2012, 236, 1875-1887. | 1.6 | 90        |
| 65 | The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics, 2012, 28, 2059-2061.          | 1.8 | 301       |
| 66 | Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence: A Journal of RNA Regulation, 2012, 3, 4.                                              | 8.0 | 176       |
| 67 | FiRePat—Finding Regulatory Patterns between sRNAs and Genes. Wiley Interdisciplinary Reviews: Data<br>Mining and Knowledge Discovery, 2012, 2, 273-284.                          | 4.6 | 6         |
| 68 | The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis and Rheumatism, 2012, 64, 1909-1919.                                                    | 6.7 | 204       |
| 69 | Regulation of Leaf Morphology by MicroRNA394 and its Target LEAF CURLING RESPONSIVENESS. Plant and Cell Physiology, 2012, 53, 1283-1294.                                         | 1.5 | 107       |
| 70 | Biogenesis of Y RNAâ€derived small RNAs is independent of the microRNA pathway. FEBS Letters, 2012, 586,<br>1226-1230.                                                           | 1.3 | 67        |
| 71 | Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation.<br>Development (Cambridge), 2012, 139, e1-e1.                            | 1.2 | 1         |
| 72 | Small RNA Discovery and Characterisation in Eukaryotes Using High-Throughput Approaches.<br>Advances in Experimental Medicine and Biology, 2011, 722, 239-254.                   | 0.8 | 6         |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Silencing Human Cancer: Identification and Uses of MicroRNAs. Recent Patents on Anti-Cancer Drug Discovery, 2011, 6, 94-105.                                                                                                             | 0.8 | 5         |
| 74 | Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant Journal, 2011, 66, 863-876.                                                                                                                | 2.8 | 189       |
| 75 | Profiling of short RNAs during fleshy fruit development reveals stageâ€specific sRNAome expression patterns. Plant Journal, 2011, 67, 232-246.                                                                                           | 2.8 | 138       |
| 76 | Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene. BMC Genomics, 2011, 12, 62.                                                                                          | 1.2 | 44        |
| 77 | MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to<br>developmental timing of myogenesis. Proceedings of the National Academy of Sciences of the United<br>States of America, 2011, 108, 11936-11941. | 3.3 | 110       |
| 78 | MicroRNA. , 2011, , 2303-2305.                                                                                                                                                                                                           |     | 0         |
| 79 | Recent Patents in RNA Silencing in Plants: Constructs, Methods and Applications in Plant<br>Biotechnology. Recent Patents on DNA & Gene Sequences, 2010, 4, 155-166.                                                                     | 0.7 | 6         |
| 80 | miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta, 2010,<br>231, 705-716.                                                                                                                   | 1.6 | 356       |
| 81 | Nucleotide bias of DCL and AGO in plant anti-virus gene silencing. Protein and Cell, 2010, 1, 847-858.                                                                                                                                   | 4.8 | 22        |
| 82 | Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology, 2010,<br>408, 49-56.                                                                                                                       | 1.1 | 109       |
| 83 | Short RNAs in Tomato. Journal of Integrative Plant Biology, 2010, 52, 388-392.                                                                                                                                                           | 4.1 | 25        |
| 84 | Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal, 2010, 62, no-no.                                                                                         | 2.8 | 53        |
| 85 | Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level.<br>Rna, 2010, 16, 489-494.                                                                                                          | 1.6 | 106       |
| 86 | Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Research, 2010, 38, 5535-5541.                                                      | 6.5 | 104       |
| 87 | Structural and Functional Analysis of Viral siRNAs. PLoS Pathogens, 2010, 6, e1000838.                                                                                                                                                   | 2.1 | 128       |
| 88 | Detection of Small Non-coding RNAs. Methods in Molecular Biology, 2010, 655, 265-274.                                                                                                                                                    | 0.4 | 1         |
| 89 | Identification of grapevine microRNAs and their targets using high throughput sequencing and degradome analysis. Plant Journal, 2010, 62, 960-76.                                                                                        | 2.8 | 335       |
| 90 | Deep Sequencing of Viroid-Derived Small RNAs from Grapevine Provides New Insights on the Role of<br>RNA Silencing in Plant-Viroid Interaction. PLoS ONE, 2009, 4, e7686.                                                                 | 1.1 | 130       |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. Journal of Experimental Biology, 2009, 212, 1781-1793. | 0.8 | 148       |
| 92  | Deciphering the diversity of small RNAs in plants: the long and short of it. Briefings in Functional Genomics & Proteomics, 2009, 8, 472-481.                                                                                                                             | 3.8 | 28        |
| 93  | microRNA-449 is a putative regulator of choroid plexus development and function. Brain Research, 2009, 1250, 20-26.                                                                                                                                                       | 1.1 | 22        |
| 94  | High throughput sequencing of microRNAs in chicken somites. FEBS Letters, 2009, 583, 1422-1426.                                                                                                                                                                           | 1.3 | 62        |
| 95  | Sulphur starvation induces the expression of microRNAâ€395 and one of its target genes but in different cell types. Plant Journal, 2009, 57, 313-321.                                                                                                                     | 2.8 | 377       |
| 96  | Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nature Genetics, 2009, 41, 609-613.                                                                                                                               | 9.4 | 483       |
| 97  | An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature Genetics, 2009, 41, 614-618.                                                                                                                                                   | 9.4 | 281       |
| 98  | RNA Silencing: Recent Developments on miRNAs. Recent Patents on DNA & Gene Sequences, 2009, 3, 77-87.                                                                                                                                                                     | 0.7 | 9         |
| 99  | MicroRNAs and cancer. Journal of Internal Medicine, 2008, 263, 366-375.                                                                                                                                                                                                   | 2.7 | 117       |
| 100 | High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families.<br>BMC Genomics, 2008, 9, 593.                                                                                                                                          | 1.2 | 248       |
| 101 | Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Developmental Biology, 2008, 321, 491-499.                                                                                                                     | 0.9 | 239       |
| 102 | Evidence for GC preference by monocot Dicer-like proteins. Biochemical and Biophysical Research Communications, 2008, 368, 433-437.                                                                                                                                       | 1.0 | 23        |
| 103 | Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Research, 2008, 18, 1602-1609.                                                                                                                               | 2.4 | 423       |
| 104 | A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics, 2008, 24, 2252-2253.                                                                                                                                                                        | 1.8 | 299       |
| 105 | Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. Rna, 2008, 14, 2513-2520.                                                                                                                                                    | 1.6 | 102       |
| 106 | Identification of genes targeted by microRNAs. Biochemical Society Transactions, 2008, 36, 1194-1196.                                                                                                                                                                     | 1.6 | 13        |
| 107 | The role of small RNAs in abiotic stress. FEBS Letters, 2007, 581, 3592-3597.                                                                                                                                                                                             | 1.3 | 217       |
| 108 | Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS<br>Letters, 2007, 581, 3267-3272.                                                                                                                                       | 1.3 | 67        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The p122 Subunit of <i>Tobacco Mosaic Virus</i> Replicase Is a Potent Silencing Suppressor and Compromises both Small Interfering RNA- and MicroRNA-Mediated Pathways. Journal of Virology, 2007, 81, 11768-11780. | 1.5  | 157       |
| 110 | In Situ Detection of Animal and Plant MicroRNAs. DNA and Cell Biology, 2007, 26, 251-255.                                                                                                                          | 0.9  | 34        |
| 111 | SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. Plant Journal, 2007, 50, 140-148.                               | 2.8  | 74        |
| 112 | Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta, 2007, 226, 709-717.                                                                                                                   | 1.6  | 90        |
| 113 | Identification of new central nervous system specific mouse microRNAs. FEBS Letters, 2006, 580, 2195-2200.                                                                                                         | 1.3  | 100       |
| 114 | The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Letters, 2006, 580, 4214-4217.                                                                                              | 1.3  | 384       |
| 115 | Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Letters, 2006, 580, 5185-5188.                                                                                                    | 1.3  | 124       |
| 116 | MicroRNAs and the hallmarks of cancer. Oncogene, 2006, 25, 6170-6175.                                                                                                                                              | 2.6  | 344       |
| 117 | A simplified method for cloning of short interfering RNAs from Brassica juncea infected with Turnip<br>mosaic potyvirus and Turnip crinkle carmovirus. Journal of Virological Methods, 2006, 136, 217-223.         | 1.0  | 58        |
| 118 | FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos.<br>Developmental Dynamics, 2006, 235, 2185-2191.                                                                       | 0.8  | 82        |
| 119 | RNA Polymerase IV Directs Silencing of Endogenous DNA. Science, 2005, 308, 118-120.                                                                                                                                | 6.0  | 647       |
| 120 | Size-dependent cell-to-cell movement of defective interfering RNAs of Cymbidium ringspot virus.<br>Journal of General Virology, 2002, 83, 1505-1510.                                                               | 1.3  | 8         |
| 121 | SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO<br>Journal, 2001, 20, 2069-2078.                                                                                | 3.5  | 306       |
| 122 | Potato Virus X Amplicons in Arabidopsis Mediate Genetic and Epigenetic Gene Silencing. Plant Cell, 2000, 12, 369-379.                                                                                              | 3.1  | 174       |
| 123 | An RNA-Dependent RNA Polymerase Gene in Arabidopsis Is Required for Posttranscriptional Gene<br>Silencing Mediated by a Transgene but Not by a Virus. Cell, 2000, 101, 543-553.                                    | 13.5 | 956       |
| 124 | Secondary structure-dependent evolution of Cymbidium ringspot virus defective interfering RNA<br>Journal of General Virology, 1997, 78, 1227-1234.                                                                 | 1.3  | 22        |
| 125 | Generation of Defective Interfering RNA Dimers of Cymbidium Ringspot Tombusvirus. Virology, 1995, 207, 510-517.                                                                                                    | 1.1  | 23        |
| 126 | Localization of cis-acting sequences essential for cymbidium ringspot tombusvirus defective interfering RNA replication. Journal of General Virology, 1995, 76, 2311-2316.                                         | 1.3  | 30        |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The nature of multimeric forms of cymbidium ringspot tombusvirus satellite RNA. Archives of<br>Virology, 1994, 138, 161-167.                                           | 0.9 | 5         |
| 128 | Expression of homologous and heterologous viral coat protein-encoding genes using recombinant DI<br>RNA from cymbidium ringspot tombusvirus. Gene, 1994, 138, 159-163. | 1.0 | 10        |
| 129 | Repair in Vivo of Altered 3′ Terminus of Cymbidium Ringspot Tombusvirus RNA. Virology, 1993, 192, 551-555.                                                             | 1.1 | 40        |
| 130 | Defective Interfering RNA-Mediated Resistance against Cymbidium Ringspot Tombusvirus in Transgenic<br>Plants. Virology, 1993, 193, 313-318.                            | 1.1 | 48        |
| 131 | Functional Analysis of Cymbidium Ringspot Virus Genome. Virology, 1993, 194, 697-704.                                                                                  | 1.1 | 104       |
| 132 | Consequences of gene transfer between distantly related tombusviruses. Gene, 1993, 129, 191-196.                                                                       | 1.0 | 4         |
| 133 | Cloning and sequencing of potato virus Y (Hungarian isolate) genomic RNA. Gene, 1993, 123, 149-156.                                                                    | 1.0 | 94        |
| 134 | Efficient pathogen-derived resistance induced by integrated potato virus Y coat protein gene in tobacco. Biochimie, 1993, 75, 623-629.                                 | 1.3 | 19        |
| 135 | The replication of cymbidium ringspot tombusvirus defective interfering-satellite RNA hybrid molecules. Virology, 1992, 190, 579-586.                                  | 1.1 | 18        |
| 136 | Replication and Movement of a Coat Protein Mutant of Cymbidium Ringspot Tombusvirus. Molecular<br>Plant-Microbe Interactions, 1992, 5, 379.                            | 1.4 | 41        |
| 137 | Virus-induced Gene Silencing. , 0, , 223-243.                                                                                                                          |     | 1         |