
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/78954/publications.pdf Version: 2024-02-01

LIN SHANC

#	Article	IF	CITATIONS
1	Enhanced visible-light-driven heterogeneous photocatalytic CO2 methanation using a Cu2O@Cu-MOF-74 thin film. ChemPhysMater, 2023, 2, 126-133.	2.8	4
2	Recent Advances on Porous Materials for Synergetic Adsorption and Photocatalysis. Energy and Environmental Materials, 2022, 5, 711-730.	12.8	30
3	A modified flower pollen-based photothermocatalytic process for enhanced solar water disinfection: Photoelectric effect and bactericidal mechanisms. Water Research, 2022, 217, 118423.	11.3	21
4	Engineered biochar as a potential adsorbent for carbon dioxide capture. , 2022, , 345-359.		1
5	Customizing high-performance molten salt biochar from wood waste for CO2/N2 separation. Fuel Processing Technology, 2022, 234, 107319.	7.2	23
6	Nanomaterial-enabled photothermal-based solar water disinfection processes: Fundamentals, recent advances, and mechanisms. Journal of Hazardous Materials, 2022, 437, 129373.	12.4	21
7	Regulating the spin state of single-atom doped covalent triazine frameworks for efficient nitrogen fixation. Journal of Colloid and Interface Science, 2022, 627, 931-941.	9.4	4
8	Thio-groups decorated covalent triazine frameworks for selective mercury removal. Journal of Hazardous Materials, 2021, 403, 123702.	12.4	60
9	PAA@ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2.5 capture. Chemical Engineering Journal, 2021, 405, 126584.	12.7	50
10	Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption. Chemical Engineering Journal, 2021, 406, 126782.	12.7	119
11	Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support. Journal of Cleaner Production, 2021, 289, 125142.	9.3	56
12	The rational design of Li-doped nitrogen adsorbents for natural gas purification. Physical Chemistry Chemical Physics, 2021, 23, 971-981.	2.8	6
13	Atomically Dispersed Iron Metal Site in a Porphyrin-Based Metal–Organic Framework for Photocatalytic Nitrogen Fixation. ACS Nano, 2021, 15, 9670-9678.	14.6	127
14	Adsorption and visible-light photocatalytic degradation of organic pollutants by functionalized biochar: Role of iodine doping and reactive species. Environmental Research, 2021, 197, 111026.	7.5	31
15	Direct identification of HMX via guest-induced fluorescence turn-on of molecular cage. Chinese Chemical Letters, 2021, 32, 4006-4010.	9.0	9
16	Ambient NO2 adsorption removal by Mg–Al layered double hydroxides and derived mixed metal oxides. Journal of Cleaner Production, 2021, 313, 127956.	9.3	25
17	Chrysanthemum flower like silica with highly dispersed Cu nanoparticles as a high-performance NO2 adsorbent. Journal of Hazardous Materials, 2021, 418, 126400.	12.4	20
18	Toxicity assessment and underlying mechanisms of multiple metal organic frameworks using the green algae Chlamydomonas reinhardtii model. Environmental Pollution, 2021, 291, 118199.	7.5	20

#	Article	IF	CITATIONS
19	The low-temperature NO2 removal by tailoring metal node in porphyrin-based metal-organic frameworks. Science of the Total Environment, 2021, 801, 149710.	8.0	17
20	NO ₂ Removal by Adsorption on Transition-Metal-Based Layered Double Hydroxides. ACS ES&T Engineering, 2021, 1, 375-384.	7.6	22
21	Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS ₂ Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms. Environmental Science & Technology, 2020, 54, 537-549.	10.0	69
22	Synthesis and modification of moisture-stable coordination pillared-layer metal-organic framework (CPL-MOF) CPL-2 for ethylene/ethane separation. Microporous and Mesoporous Materials, 2020, 293, 109784.	4.4	30
23	Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose. Chemical Engineering Journal, 2020, 383, 122914.	12.7	28
24	Evidence of inter-species swing adsorption between aromatic hydrocarbons. Environmental Research, 2020, 181, 108814.	7.5	13
25	Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. Journal of Hazardous Materials, 2020, 391, 121147.	12.4	132
26	Complete Degradation of Gaseous Methanol over Pt/FeO _{<i>x</i>} Catalysts by Normal Temperature Catalytic Ozonation. Environmental Science & Technology, 2020, 54, 1938-1945.	10.0	51
27	Performance Recovery in Degraded Carbon-Based Electrodes for Capacitive Deionization. Environmental Science & Technology, 2020, 54, 1848-1856.	10.0	24
28	Metal-organic framework for sorptive/catalytic removal and sensing applications against nitroaromatic compounds. Journal of Industrial and Engineering Chemistry, 2020, 84, 87-95.	5.8	37
29	Tailoring acidity and porosity of alumina catalysts via transition metal doping for glucose conversion in biorefinery. Science of the Total Environment, 2020, 704, 135414.	8.0	13
30	Transitionâ€Metal ontaining Porphyrin Metal–Organic Frameworks as Ï€â€Backbonding Adsorbents for NO 2 Removal. Angewandte Chemie, 2020, 132, 19848-19851.	2.0	2
31	Transitionâ€Metal ontaining Porphyrin Metal–Organic Frameworks as Ï€â€Backbonding Adsorbents for NO ₂ Removal. Angewandte Chemie - International Edition, 2020, 59, 19680-19683.	13.8	49
32	Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures. Journal of Cleaner Production, 2020, 273, 122915.	9.3	94
33	Liquid Marbles in Liquid. Small, 2020, 16, e2002802.	10.0	11
34	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie, 2020, 132, 19558-19570.	2.0	12
35	N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases. Chemical Engineering Journal, 2020, 396, 125376.	12.7	62
36	Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chemical Science, 2020, 11, 6670-6681.	7.4	130

#	Article	IF	CITATIONS
37	Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. Science of the Total Environment, 2020, 739, 139845.	8.0	91
38	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6990-7001.	6.7	63
39	Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. Chemical Engineering Journal, 2020, 393, 124666.	12.7	85
40	Separation of CO ₂ and CH ₄ by Pressure Swing Adsorption Using a Molecular Trapdoor Chabazite Adsorbent for Natural Gas Purification. Industrial & Engineering Chemistry Research, 2020, 59, 7857-7865.	3.7	44
41	Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 2020, 186, 109547.	7.5	280
42	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie - International Edition, 2020, 59, 19390-19402.	13.8	94
43	Effective Gas Separation Performance Enhancement Obtained by Constructing Polymorphous Core–Shell Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 30234-30239.	8.0	19
44	Fabricating Mechanically Robust Binderâ€Free Structured Zeolites by 3D Printing Coupled with Zeolite Soldering: A Superior Configuration for CO ₂ Capture. Advanced Science, 2019, 6, 1901317.	11.2	61
45	Grafting Free Carboxylic Acid Groups onto the Pore Surface of 3D Porous Coordination Polymers for High Proton Conductivity. Chemistry of Materials, 2019, 31, 8494-8503.	6.7	40
46	Role of Structural Defects in the Adsorption and Separation of C3 Hydrocarbons in Zr-Fumarate-MOF (MOF-801). Chemistry of Materials, 2019, 31, 8413-8423.	6.7	87
47	Silica Supported MgO as An Adsorbent for Precombustion CO ₂ Capture. ACS Applied Nano Materials, 2019, 2, 6565-6574.	5.0	17
48	Modular Metal–Organic Polyhedra Superassembly: From Molecular‣evel Design to Targeted Drug Delivery. Advanced Materials, 2019, 31, e1806774.	21.0	48
49	Metal–Organic Framework Nanoparticle-Assisted Cryopreservation of Red Blood Cells. Journal of the American Chemical Society, 2019, 141, 7789-7796.	13.7	82
50	SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticleâ€Based Exoskeletons. Advanced Materials, 2019, 31, e1900545.	21.0	96
51	A review on functional polymer-clay based nanocomposite membranes for treatment of water. Journal of Hazardous Materials, 2019, 379, 120584.	12.4	104
52	Exfoliated Ni-Al LDH 2D nanosheets for intermediate temperature CO2 capture. Journal of Hazardous Materials, 2019, 374, 365-371.	12.4	55
53	Novel M (Mg/Ni/Cu)-Al-CO3 layered double hydroxides synthesized by aqueous miscible organic solvent treatment (AMOST) method for CO2 capture. Journal of Hazardous Materials, 2019, 373, 285-293.	12.4	38
54	Transition metal cation-exchanged SSZ-13 zeolites for CO2 capture and separation from N2. Chemical Engineering Journal, 2019, 370, 1450-1458.	12.7	70

#	Article	IF	CITATIONS
55	Enhanced photoelectrochemical charge transfer on Mn-doped CdS/TiO2 nanotube arrays: The roles of organic substrates. Catalysis Today, 2019, 335, 468-476.	4.4	20
56	Generation and extraction of hydrogen from low-temperature water-gas-shift reaction by a ZIF-8-based membrane reactor. Microporous and Mesoporous Materials, 2019, 280, 347-356.	4.4	17
57	Tin-Functionalized Wood Biochar as a Sustainable Solid Catalyst for Glucose Isomerization in Biorefinery. ACS Sustainable Chemistry and Engineering, 2019, 7, 4851-4860.	6.7	59
58	Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery. Green Chemistry, 2019, 21, 1267-1281.	9.0	157
59	Efficient Z-scheme visible-light-driven photocatalytic bacterial inactivation by hierarchical MoS2-encapsulated hydrothermal carbonation carbon core-shell nanospheres. Applied Surface Science, 2019, 464, 43-52.	6.1	28
60	Amine-Functionalized Metal–Organic Frameworks and Covalent Organic Polymers as Potential Sorbents for Removal of Formaldehyde in Aqueous Phase: Experimental Versus Theoretical Study. ACS Applied Materials & Interfaces, 2019, 11, 1426-1439.	8.0	65
61	Modulated anodization synthesis of Sn-doped iron oxide with enhanced solar water splitting performance. Materials Today Chemistry, 2019, 12, 7-15.	3.5	12
62	Versatile Surface Functionalization of Metal–Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications. Advanced Functional Materials, 2018, 28, 1705274.	14.9	90
63	An optimal trapdoor zeolite for exclusive admission of CO ₂ at industrial carbon capture operating temperatures. Chemical Communications, 2018, 54, 3134-3137.	4.1	42
64	Propylene carbonate and γ-valerolactone as green solvents enhance Sn(<scp>iv</scp>)-catalysed hydroxymethylfurfural (HMF) production from bread waste. Green Chemistry, 2018, 20, 2064-2074.	9.0	85
65	Contaminant uptake by polymeric passive samplers: A modeling study with experimental validation. Chemical Engineering Research and Design, 2018, 129, 231-236.	5.6	9
66	Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 2018, 28, 160-167.	4.4	72
67	Contrasting Roles of Maleic Acid in Controlling Kinetics and Selectivity of Sn(IV)- and Cr(III)-Catalyzed Hydroxymethylfurfural Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14264-14274.	6.7	28
68	Theoretical Study of Moisture-Pretreated Lithium as Potential Material for Natural Gas Upgrading. Industrial & Engineering Chemistry Research, 2018, , .	3.7	3
69	Facilitated Dissociation of Water in the Presence of Lithium Metal at Ambient Temperature as a Requisite for Lithium–Gas Reactions. Journal of Physical Chemistry C, 2018, 122, 16016-16022.	3.1	10
70	Pd(0) loaded Zn ₂ (azoBDC) ₂ (dabco) as a heterogeneous catalyst. CrystEngComm, 2017, 19, 4182-4186.	2.6	13
71	Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. ChemSusChem, 2017, 10, 2968-2977.	6.8	30
72	Temperature-regulated guest admission and release in microporous materials. Nature Communications, 2017, 8, 15777.	12.8	60

#	Article	IF	CITATIONS
73	Synthesis of Nanocontainer Chabazites from Fly Ash with a Template- and Fluoride-Free Process for Cesium Ion Adsorption. Energy & Fuels, 2017, 31, 4301-4307.	5.1	14
74	Metal–Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives. Nano Letters, 2017, 17, 1-7.	9.1	56
75	Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53. Polyhedron, 2016, 120, 103-111.	2.2	92
76	Exchange Method Using Acidâ€Solvent Synergy for Metal–Organic Framework Synthesis (EASYâ€MOFs) Based on a Typical Pillarâ€Layered Parent Structure. European Journal of Inorganic Chemistry, 2016, 2016, 1466-1469.	2.0	6
77	Methyllithiumâ€Doped Naphthylâ€Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance. Chemistry - A European Journal, 2016, 22, 7944-7949.	3.3	11
78	A density functional theory study for the adsorption of various gases on a caesium-exchanged trapdoor chabazite. Computational Materials Science, 2016, 122, 307-313.	3.0	25
79	A comparative study on conversion of porous and non-porous metal–organic frameworks (MOFs) into carbon-based composites for carbon dioxide capture. Polyhedron, 2016, 120, 30-35.	2.2	21
80	Novel low energy hydrogen–deuterium isotope breakthrough separation using a trapdoor zeolite. Chemical Engineering Journal, 2016, 288, 161-168.	12.7	30
81	Functionalized UiO-66 by Single and Binary (OH) ₂ and NO ₂ Groups for Uptake of CO ₂ and CH ₄ . Industrial & Engineering Chemistry Research, 2016, 55, 7924-7932.	3.7	61
82	Metal–Organic Polyhedra Cages Immobilized on a Plasmonic Substrate for Sensitive Detection of Trace Explosives. Advanced Functional Materials, 2015, 25, 6009-6017.	14.9	47
83	Converting 3D rigid metal–organic frameworks (MOFs) to 2D flexible networks via ligand exchange for enhanced CO ₂ /N ₂ and CH ₄ /N ₂ separation. Chemical Communications, 2015, 51, 14716-14719.	4.1	45
84	Tuning the oxygen functional groups in reduced graphene oxide papers to enhance the electromechanical actuation. RSC Advances, 2015, 5, 68052-68060.	3.6	9
85	Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel, 2015, 160, 318-327.	6.4	99
86	Density Functional Theory Computational Study of Alkali Cation-Exchanged Sodalite-like Zeolitelike Metal–Organic Framework for CO2, N2, and CH4 Adsorption. Journal of Physical Chemistry C, 2015, 119, 27449-27456.	3.1	7
87	Biogas upgrading through kinetic separation of carbon dioxide and methane over Rb- and Cs-ZK-5 zeolites. RSC Advances, 2014, 4, 62511-62524.	3.6	36
88	Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: A combination of van der Waals density functional theory calculations and experiment study. Journal of Chemical Physics, 2014, 140, 084705.	3.0	43
89	Temperature controlled invertible selectivity for adsorption of N2 and CH4 by molecular trapdoor chabazites. Chemical Communications, 2014, 50, 4544.	4.1	33
90	Piezoelectric properties of graphene oxide: A first-principles computational study. Applied Physics Letters, 2014, 105, .	3.3	58

#	Article	IF	CITATIONS
91	One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption. Colloid and Polymer Science, 2013, 291, 2711-2717.	2.1	40
92	Determination of Composition Range for "Molecular Trapdoor―Effect in Chabazite Zeolite. Journal of Physical Chemistry C, 2013, 117, 12841-12847.	3.1	104
93	Amino-functionalized Zr-MOF nanoparticles for adsorption of CO ₂ and CH ₄ . International Journal of Smart and Nano Materials, 2013, 4, 72-82.	4.2	114
94	Discriminative Separation of Gases by a "Molecular Trapdoor―Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 2012, 134, 19246-19253.	13.7	321
95	Potassium Chabazite: A Potential Nanocontainer for Gas Encapsulation. Journal of Physical Chemistry C, 2010, 114, 22025-22031.	3.1	45