## Manfred Lein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7894164/publications.pdf

Version: 2024-02-01

|          |                | 87888        | 15732          |
|----------|----------------|--------------|----------------|
| 136      | 21,877         | 38           | 125            |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
| 137      | 137            | 137          | 40412          |
| 137      | 137            | 137          | 40412          |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nature Communications, $2019, 10, 1$ .                                          | 12.8 | 15,301    |
| 2  | Probing Proton Dynamics in Molecules on an Attosecond Time Scale. Science, 2006, 312, 424-427.                                                                       | 12.6 | 797       |
| 3  | Role of the Intramolecular Phase in High-Harmonic Generation. Physical Review Letters, 2002, 88, 183903.                                                             | 7.8  | 465       |
| 4  | Molecular imaging using recolliding electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, R135-R173.                                     | 1.5  | 369       |
| 5  | Interference effects in high-order harmonic generation with molecules. Physical Review A, 2002, 66, .                                                                | 2.5  | 328       |
| 6  | Attosecond Probing of Vibrational Dynamics with High-Harmonic Generation. Physical Review Letters, 2005, 94, 053004.                                                 | 7.8  | 285       |
| 7  | Intense-Field Double Ionization of Helium: Identifying the Mechanism. Physical Review Letters, 2000, 85, 4707-4710.                                                  | 7.8  | 278       |
| 8  | Exact Time-Dependent Exchange-Correlation Potentials for Strong-Field Electron Dynamics. Physical Review Letters, 2005, 94, 143003.                                  | 7.8  | 138       |
| 9  | Electron diffraction in above-threshold ionization of molecules. Physical Review A, 2002, 66, .                                                                      | 2.5  | 134       |
| 10 | Orientation dependence of high-order harmonic generation in molecules. Physical Review A, 2003, 67, .                                                                | 2.5  | 118       |
| 11 | Semiclassical two-step model for strong-field ionization. Physical Review A, 2016, 94, .                                                                             | 2.5  | 114       |
| 12 | Electron correlation energies from scaled exchange-correlation kernels: Importance of spatial versus temporal nonlocality. Physical Review B, 2000, 61, 13431-13437. | 3.2  | 113       |
| 13 | Attosecond Probing of Nuclear Dynamics with Trajectory-Resolved High-Harmonic Spectroscopy. Physical Review Letters, 2017, 119, 033201.                              | 7.8  | 111       |
| 14 | Toward the description of van der Waals interactions within density functional theory. Journal of Computational Chemistry, 1999, 20, 12-22.                          | 3.3  | 106       |
| 15 | Even-Harmonic Generation due to Beyond-Born-Oppenheimer Dynamics. Physical Review Letters, 2001, 87, 103901.                                                         | 7.8  | 105       |
| 16 | Dynamic Two-Center Interference in High-Order Harmonic Generation from Molecules with Attosecond Nuclear Motion. Physical Review Letters, 2008, 101, 053901.         | 7.8  | 105       |
| 17 | Strong-field approximation for harmonic generation in diatomic molecules. Physical Review A, 2006, 73, .                                                             | 2.5  | 101       |
| 18 | Strong-field ionization dynamics of a modelH2molecule. Physical Review A, 2002, 65, .                                                                                | 2.5  | 97        |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Role of orbital symmetry in high-order harmonic generation from aligned molecules. Physical Review A, 2004, 69, .                                                                                  | 2.5  | 97        |
| 20 | Reciprocal-Space-Trajectory Perspective on High-Harmonic Generation in Solids. Physical Review Letters, 2019, 122, 193901.                                                                         | 7.8  | 96        |
| 21 | Emission times in high-order harmonic generation. Physical Review A, 2010, 81, .                                                                                                                   | 2.5  | 91        |
| 22 | Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering. Nature Communications, 2017, 8, 15651.                                                          | 12.8 | 91        |
| 23 | High-order harmonic generation in the presence of a resonance. Physical Review A, 2011, 84, .                                                                                                      | 2.5  | 82        |
| 24 | High-order harmonic generation in laser-aligned molecules. Physical Review A, 2002, 65, .                                                                                                          | 2.5  | 78        |
| 25 | Magnetic fields alter strong-field ionization. Nature Physics, 2019, 15, 1222-1226.                                                                                                                | 16.7 | 69        |
| 26 | Determination of Ionization and Tunneling Times in High-Order Harmonic Generation. Physical Review Letters, 2013, 111, 043901.                                                                     | 7.8  | 68        |
| 27 | Influence of Coulomb continuum wave functions in the description of high-order harmonic generation withH2+. Physical Review A, 2007, 75, .                                                         | 2.5  | 59        |
| 28 | Numerical verification of the theory of nonadiabatic tunnel ionization in strong circularly polarized laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 204016. | 1.5  | 55        |
| 29 | Isolated sub-fs XUV pulse generation in Mn plasma ablation. Optics Express, 2012, 20, 25239.                                                                                                       | 3.4  | 54        |
| 30 | Direct Experimental Access to the Nonadiabatic Initial Momentum Offset upon Tunnel Ionization. Physical Review Letters, 2018, 121, 163202.                                                         | 7.8  | 52        |
| 31 | Theory of high-order harmonic generation from molecules by intense laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 081002.                                    | 1.5  | 51        |
| 32 | Synchronized pulses generated at 20 eV and 90 eV for attosecond pump–probe experiments. Nature Photonics, 2015, 9, 383-387.                                                                        | 31.4 | 48        |
| 33 | Photoelectron circular dichroism of chiral molecules studied with a continuum-state-corrected strong-field approximation. Physical Review A, 2014, 89, .                                           | 2.5  | 47        |
| 34 | Molecular Imaging Using High-Order Harmonic Generation and Above-Threshold Ionization. Physical Review Letters, 2012, 108, 043004.                                                                 | 7.8  | 44        |
| 35 | Analysis of recombination in high-order harmonic generation in molecules. Physical Review A, 2005, 71,                                                                                             | 2.5  | 43        |
| 36 | Theory of Subcycle Linear Momentum Transfer in Strong-Field Tunneling Ionization. Physical Review Letters, 2020, 125, 073202.                                                                      | 7.8  | 42        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Journeys from quantum optics to quantum technology. Progress in Quantum Electronics, 2017, 54, 19-45.                                                                         | 7.0 | 41        |
| 38 | Interference in above-threshold-ionization electron distributions from molecules. Physical Review A, $2011,83$ , .                                                            | 2.5 | 40        |
| 39 | High-order above-threshold ionization beyond the electric dipole approximation. Journal of Physics B:<br>Atomic, Molecular and Optical Physics, 2018, 51, 094005.             | 1.5 | 39        |
| 40 | Ultrahigh Harmonics from Laser-Assisted Ion-Atom Collisions. Physical Review Letters, 2003, 91, 243901.                                                                       | 7.8 | 37        |
| 41 | Non-Hermitian Quantum Mechanics for High-Order Harmonic Generation Spectra. Journal of Physical Chemistry A, 2003, 107, 7181-7188.                                            | 2.5 | 37        |
| 42 | Molecular orbital tomography using short laser pulses. Physical Review A, 2008, 78, .                                                                                         | 2.5 | 37        |
| 43 | Prediction of attosecond light pulses in the VUV range in a high-order-harmonic-generation regime.<br>Physical Review A, 2013, 87, .                                          | 2.5 | 37        |
| 44 | Signatures of Molecular Orbital Structure in Lateral Electron Momentum Distributions from Strong-Field Ionization. Physical Review Letters, 2015, 114, 103004.                | 7.8 | 37        |
| 45 | Signatures of molecular structure in the strong-field response of aligned molecules. Journal of Modern Optics, 2005, 52, 465-478.                                             | 1.3 | 34        |
| 46 | Quantitative theory for the lateral momentum distribution after strong-field ionization. Chemical Physics, 2013, 414, 69-72.                                                  | 1.9 | 33        |
| 47 | Preparing attosecond coherences by strong-field ionization. Physical Review A, 2016, 93, .                                                                                    | 2.5 | 33        |
| 48 | High-order above-threshold ionization beyond the electric dipole approximation: Dependence on the atomic and molecular structure. Physical Review A, $2018$ , $98$ , .        | 2.5 | 33        |
| 49 | On the mechanism of strong-field double photoionization in the helium atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 433-442.                   | 1.5 | 32        |
| 50 | Influence of nuclear vibration on harmonic generation in molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, S437-S444.                         | 1.5 | 32        |
| 51 | Asymmetry of Wigner's time delay in a small molecule. Physical Review A, 2014, 89, .                                                                                          | 2.5 | 32        |
| 52 | Signatures of Electronic Structure in Bicircular High-Harmonic Spectroscopy. Physical Review Letters, 2017, 119, 203201.                                                      | 7.8 | 31        |
| 53 | Assessing different forms of the strong-field approximation for harmonic generation in molecules. Journal of Modern Optics, 2007, 54, 1039-1045.                              | 1.3 | 30        |
| 54 | Antibonding molecular orbitals under the influence of elliptically polarized intense light. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, L155-L161. | 1.5 | 29        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IF                          | CITATIONS  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|
| 55 | Trajectory-free ionization times in strong-field ionization. Physical Review A, 2018, 97, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5                         | 29         |
| 56 | Electric Nondipole Effect in Strong-Field Ionization. Physical Review Letters, 2021, 126, 053202.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.8                         | 29         |
| 57 | Enhanced Recollisions for Antisymmetric Molecular Orbitals in Intense Laser Fields. Physical Review Letters, 2006, 97, 143901.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.8                         | 28         |
| 58 | Two-center interference and ellipticity in high-order harmonic generation from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mi mathvariant="normal">H</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>+&lt;</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5<br>:/mml:mo>            | 28<br>     |
| 59 | Physical Review A 2010, 82. Heteronuclear Limit of Strong-Field Ionization: Fragmentation of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>nl:mo&gt;+<td>mml:mo&gt;</td></td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math> | nl:mo>+ <td>mml:mo&gt;</td> | mml:mo>    |
| 60 | Pulse-width and isotope effects in femtosecond-pulse strong-field dissociation ofH2+andD2+. Physical Review A, 2000, 62, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                         | 27         |
| 61 | Discrete peaks in above-threshold double-ionization spectra. Physical Review A, 2001, 64, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5                         | 27         |
| 62 | Effects of the Coulomb potential in interference patterns of strong-field holography with photoelectrons. Physical Review A, 2018, 97, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5                         | 27         |
| 63 | Attoclock with counter-rotating bicircular laser fields. Physical Review A, 2019, 99, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5                         | 27         |
| 64 | Mechanisms of ultrahigh-order harmonic generation. Physical Review A, 2005, 72, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                         | 26         |
| 65 | Ultrafast multiphoton forest fires and fractals in clusters and dielectrics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, L57-L67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                         | 25         |
| 66 | Effect of dressing on high-order harmonic generation in vibrating <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub><td>1215<br/>1ml:mrow&gt;</td><td>∂5mml:math</td></mml:mrow></mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1215<br>1ml:mrow>           | ∂5mml:math |
| 67 | High-order harmonic generation from diatomic molecules in an orthogonally polarized two-color laser field. Physical Review A, 2019, 100, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                         | 25         |
| 68 | Attosecond-Scale Streaking Methods for Strong-Field Ionization by Tailored Fields. Physical Review Letters, 2020, 124, 043202.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.8                         | 25         |
| 69 | Kinematically complete experimental study of Compton scattering at helium atoms near the threshold. Nature Physics, 2020, 16, 756-760.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.7                        | 25         |
| 70 | Probing Fano resonances with ultrashort pulses. New Journal of Physics, 2012, 14, 065003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.9                         | 24         |
| 71 | Analysis of electron trajectories with two-color strong-field ionization. Physical Review A, 2015, 92, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5                         | 24         |
| 72 | Gouy's Phase Anomaly in Electron Waves Produced by Strong-Field Ionization. Physical Review Letters, 2020, 124, 153202.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.8                         | 23         |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Vibrational-state and isotope dependence of high-order harmonic generation in water molecules. Physical Review A, $2010, 81, .$                                            | 2.5 | 21        |
| 74 | Strong-field photoelectron holography beyond the electric dipole approximation: A semiclassical analysis. Physical Review A, $2019,100,100$                                | 2.5 | 21        |
| 75 | High-order above-threshold ionization in stretched molecules. Physical Review A, 2006, 74, .                                                                               | 2.5 | 20        |
| 76 | High-order-harmonic generation from dense water microdroplets. Physical Review A, 2013, 87, .                                                                              | 2.5 | 20        |
| 77 | Characterization of nuclear wave packets describing molecular photodissociation. Journal of Chemical Physics, 2000, 113, 3609-3614.                                        | 3.0 | 18        |
| 78 | Explanation for the smoothness of the phase in molecular high-order harmonic generation. Physical Review A, 2009, 80, .                                                    | 2.5 | 18        |
| 79 | Adiabaticity in the lateral electron-momentum distribution after strong-field ionization. Physical Review A, 2012, 85, .                                                   | 2.5 | 18        |
| 80 | Nonadiabatic Strong Field Ionization of Atomic Hydrogen. Physical Review Letters, 2021, 127, 273201.                                                                       | 7.8 | 17        |
| 81 | Phase-space analysis of double ionization. Optics Express, 2001, 8, 411.                                                                                                   | 3.4 | 16        |
| 82 | Numerical aspects of real-space approaches to strong-field electron dynamics. Journal of Computational Physics, 2007, 226, 89-103.                                         | 3.8 | 16        |
| 83 | Strong-field ionization in time-dependent density functional theory. Europhysics Letters, 2008, 84, 43001.                                                                 | 2.0 | 16        |
| 84 | Multiconfiguration time-dependent Hartree approach for electron-nuclear correlation in strong laser fields. Physical Review A, 2010, 81, .                                 | 2.5 | 16        |
| 85 | Streaking analysis of strong-field ionisation. Journal of Modern Optics, 2011, 58, 1188-1194.                                                                              | 1.3 | 16        |
| 86 | Extracting trajectory information from two-color strong-field ionization. Journal of Modern Optics, 2017, 64, 981-986.                                                     | 1.3 | 16        |
| 87 | Strong-field polarizability-enhanced dissociative ionization. Physical Review A, 2018, 98, .                                                                               | 2.5 | 16        |
| 88 | High-order harmonic generation in vibrating molecules. Journal of Modern Optics, 2006, 53, 113-124.                                                                        | 1.3 | 15        |
| 89 | Multielectron polarization effects in strong-field ionization: Narrowing of momentum distributions and imprints in interference structures. Physical Review A, 2018, 98, . | 2.5 | 15        |
| 90 | Magnetic-Field Effect in High-Order Above-Threshold Ionization. Physical Review Letters, 2022, 128, 023201.                                                                | 7.8 | 15        |

| #   | Article                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Quantum Wave-Packet Dynamics in Spin-Coupled Vibronic States. Journal of Physical Chemistry A, 2012, 116, 11427-11433.                                                              | 2.5  | 14        |
| 92  | Nondipole modification of the ac Stark effect in above-threshold ionization. Physical Review A, 2021, 104, .                                                                        | 2.5  | 14        |
| 93  | Electrons get real. Nature, 2012, 485, 313-314.                                                                                                                                     | 27.8 | 13        |
| 94  | Semiclassical two-step model with quantum input: Quantum-classical approach to strong-field ionization. Physical Review A, 2019, 100, .                                             | 2.5  | 12        |
| 95  | Investigations of electron wave-packet dynamics and high-order harmonic generation in laser-aligned molecules. Journal of Modern Optics, 2003, 50, 561-577.                         | 1.3  | 11        |
| 96  | High-harmonic generation with combined infrared and extreme ultraviolet fields. Journal of Modern Optics, 2014, 61, 845-850.                                                        | 1.3  | 11        |
| 97  | Velocity map imaging of scattering dynamics in orthogonal two-color fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 015001.                          | 1.5  | 11        |
| 98  | Hole-assisted energy deposition in dielectrics and clusters in the multiphoton regime. Journal of Modern Optics, 2005, 52, 1019-1030.                                               | 1.3  | 10        |
| 99  | Control of recollision wave packets for molecular orbital tomography using short laser pulses.<br>Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 074009.    | 1.5  | 10        |
| 100 | Deep learning for retrieval of the internuclear distance in a molecule from interference patterns in photoelectron momentum distributions. Physical Review A, 2022, 105, .          | 2.5  | 10        |
| 101 | Strongly enhanced high-harmonic generation via antisymmetric ionic states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, F113-F119.                        | 1.5  | 8         |
| 102 | Probing dynamical symmetries by bicircular high-order harmonic spectroscopy beyond the Born-Oppenheimer approximation. Physical Review A, 2020, 101, .                              | 2.5  | 8         |
| 103 | Probing fast nuclear wavepackets in light molecules: monitoring structural rearrangement on an attosecond timescale. Journal of Modern Optics, 2007, 54, 1011-1017.                 | 1.3  | 7         |
| 104 | Adiabatic approximation within time-dependent density functional theory using inversion of the ground-state spin-density Kohn–Sham formalism. Chemical Physics, 2011, 391, 143-146. | 1.9  | 7         |
| 105 | Positioning of Bound Electron Wave Packets in Molecules Revealed by High-Harmonic Spectroscopy. Journal of Physical Chemistry A, 2012, 116, 2723-2727.                              | 2.5  | 7         |
| 106 | Revealing the Microscopic Real-Space Excursion of a Laser-Driven Electron. Physical Review X, 2016, 6, .                                                                            | 8.9  | 7         |
| 107 | Dissociation and ionization of HeH <sup>+</sup> in sub-cycle-controlled intense two-color fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 174001.    | 1.5  | 7         |
| 108 | Attoclock with bicircular laser fields as a probe of velocity-dependent tunnel-exit positions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 164001.       | 1.5  | 7         |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Control of the Geometric Phase and Nonequivalence between Geometric-Phase Definitions in the Adiabatic Limit. Physical Review Letters, 2022, 128, 030401.                                                                                                        | 7.8 | 7         |
| 110 | High-order harmonic generation in vibrating two-electron molecules. Chemical Physics, 2009, 366, 54-57.                                                                                                                                                          | 1.9 | 6         |
| 111 | Intrinsic channel closing in strong-field single ionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review A, 2008, 77 | 2.5 | 5         |
| 112 | The time-scale of nonlinear events driven by strong fields: can one control the spin coupling before ionization runs over?. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124027.                                                       | 1.5 | 5         |
| 113 | Semiclassical two-step model for ionization of the hydrogen molecule by a strong laser field. European Physical Journal D, 2019, 73, 1.                                                                                                                          | 1.3 | 5         |
| 114 | Laser-Driven Anharmonic Oscillator: Ground-State Dissociation of the Helium Hydride Molecular Ion by Midinfrared Pulses. Physical Review Letters, 2021, 127, 043202.                                                                                             | 7.8 | 5         |
| 115 | Retrieval of the amplitude and phase of the dipole matrix element by attosecond electron-wave-packet interferometry. Physical Review A, 2013, 87, .                                                                                                              | 2.5 | 4         |
| 116 | Revealing Coulomb time shifts in high-order harmonic generation by frequency-dependent streaking. Physical Review A, 2022, 105, .                                                                                                                                | 2.5 | 4         |
| 117 | Tomographic Imaging of Molecular Orbitals in Length and Velocity Form. AIP Conference Proceedings, 2007, , .                                                                                                                                                     | 0.4 | 3         |
| 118 | Absorbing boundaries in the mean-field approximation. Physical Review A, 2010, 82, .                                                                                                                                                                             | 2.5 | 3         |
| 119 | High-order harmonic generation in laser aligned molecules. , 0, , .                                                                                                                                                                                              |     | 2         |
| 120 | Enhanced recollision dynamics via the combination of antisymmetric wave functions and beyond-dipole effects§. Journal of Modern Optics, 2007, 54, 1911-1926.                                                                                                     | 1.3 | 2         |
| 121 | Time-dependent density functional theory for strong-field ionization by circularly polarized pulses.<br>Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 055601.                                                                           | 1.5 | 2         |
| 122 | Extreme-ultraviolet frequency combs from high-order harmonic generation with few-cycle pulse trains. Physical Review A, 2017, 95, .                                                                                                                              | 2.5 | 2         |
| 123 | Stabilizing isolated attosecond pulse formation by dispersion tuning. Journal of the Optical Society of America B: Optical Physics, 2018, 35, A22.                                                                                                               | 2.1 | 2         |
| 124 | Probing Molecular Structure and Dynamics by Laser-Driven Electron Recollisions. Springer Series in Optical Sciences, 2008, , 209-224.                                                                                                                            | 0.7 | 1         |
| 125 | Orbital Functionals in Static and Time-Dependent Density Functional Theory., 1999,, 393-427.                                                                                                                                                                     |     | 1         |
| 126 | Investigations of electron wave-packet dynamics and high-order harmonic generation in laser-aligned molecules. Journal of Modern Optics, 2003, 50, 561-577.                                                                                                      | 1.3 | 1         |

| #   | Article                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Probing Attosecond Dynamics by Laser Driven Electron Recollisions. AIP Conference Proceedings, 2006, , .                                                        | 0.4 | 0         |
| 128 | Probing proton dynamics in molecules on an attosecond timescale. , 2007, , .                                                                                    |     | 0         |
| 129 | Probing proton dynamics in molecules on an attosecond timescale. , 2007, , .                                                                                    |     | 0         |
| 130 | Influence of molecular vibration on enhancements in high-order above-threshold ionization of hydrogen molecules. Journal of Modern Optics, 2008, 55, 2631-2641. | 1.3 | 0         |
| 131 | Sub-fs pulse generation and characterisation in the VUV. , 2013, , .                                                                                            |     | 0         |
| 132 | Isolated attosecond pulse generation in transition metal ablation plumes. , 2013, , .                                                                           |     | 0         |
| 133 | Non-perturbative semiclassical model for strong-field ionization. Journal of Physics: Conference Series, 2017, 875, 022019.                                     | 0.4 | 0         |
| 134 | Minimizing attosecond CEP jitter by carrier envelope phase tuning. EPJ Web of Conferences, 2019, 205, 02011.                                                    | 0.3 | 0         |
| 135 | Heteronuclear Limit of Strong-Field Ionization: Laser-Induced Fragmentation of HeH+. , 2019, , .                                                                |     | 0         |
| 136 | Theory of Subcycle Linear Momentum Transfer in Strong-Field Tunneling Ionization. , 2020, , .                                                                   |     | 0         |